ASSOCIATION OF CANCER MOLECULAR PARAMETERS WITH EFFECTIVENESS OF PAZOPANIB TREATMENT IN ADVANCED KIDNEY CANCER PATIENTS

DOI: https://doi.org/None

Z.A. Yurmazov (1), E.A. Usynin (1), I.V. Kondakova (1), E.M. Slonimskaya (1,2), L.V. Spirina (1,2) 1 -Tomsk Cancer Research Institute, Kooperativny street, 5, Tomsk, 634050, Russian Federation; 2 -Siberian State Medical University, Moskovsky trakt, 2, Tomsk, 634050, Russian Federation

Introduction. The search for criteria for the prediction of the efficacy of targeted therapies will allow not only to optimize the readings, but also to improve the results of treatment of patients with metastatic kidney cancer. The aim of the study is the investigation of the link of transcription factors, VEGF, VEGFR2, m-TOR expressions and proteasome and calpain activity with the effectivity of pazopanib usage in advanced kidney cancer patients. Methods. 26 patients with disseminated kidney cancer were included in the investigation. The expression of transcription factors and growth factors were determined by ELISA. Proteasome and calpain activity was measured with the use of specific fluorogenic substrate. Results. The partial kidney cancer regression is revealed in 29,6% of patients treated with pazopanib, cancer stabilization – in 61,5% of patients and cancer progression – in 11,5% of patients. The increased level of transcription factors NF-κB, HIF-1, growth factor VEGF and high proteasome activity in cancer tissues before targeted therapy are associated with the effective treatment. It is obtained the significant decrease of investigated markers after pazopanib usage of advanced kidney cancer patients. Conclusion. Additional molecular markers were revealed to predict the effectivity of pazopanib treatment.
Keywords: 
pazopanib, transcription factor HIF-1, VEGF, VEGFR2, transcription factor NF-κB, m-TOR, intracellular proteinases, kidney cancer

Список литературы: 
  1. Guerin M., Salem N., Walz J., Dermeche S., Gravis G. Major response with sorafenib in advanced renal cell carcinoma after 14 years of follow-up. World Journal of Surgical Oncology. 2013; 11: 243–7.
  2. Levy A., Hollebecque A., Ferte’ C., Koscielny S., Fernandez M., Soria J.-C., Massard C. Tumor Assessment Criteria in Phase I Trials: Beyond RECIST. J. of Clinical oncology. 2013; 31: 395.
  3. Keefe S.M., Nathanson K.L., Rathmell W.K. The molecular biology of renal cell carcinoma. Semin. Oncol. 2013; 40 (4): 421–8.
  4. Na X., Wu G., Ryan C.K., Shoen S.R., di’Santagness P.A., messing E.M. Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J. Urol. 2003; 170 (2 Pt 1): 588–92.
  5. Guertin D. A., Sabatini D.M. An expanding role for mTOR in cancer. Trends. Mol. Med. 2005; 11 (8): 353–61.
  6. Hoffmann A., Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol. Rev. 2006; 210: 171–86.
  7. Spirina L.V., Kondakova I.V., Usynin E.A., Vintizenko S.I. Regulyaciya angiogeneza pri zlokachestvennyh novoobrazovaniyah pochki i mochevogo puzyrya. Sibirskiy onkologicheskiy zhurnal. 2008; 28: 65–70. [Spirina L.V., Kondakova I.V., Usynin Y.A., Vintizenko S.I. Angiogenesis regulation in renal and bladder cancers. Siberian journal of oncology. 2008; 28: 65–70 (in Russian)]
  8. Spirina L.V., Kondakova I.V., Usynin E.A., Yurmazov Z.A Regulyaciya e`kspressii transkripcionnyh faktorov i faktora rosta e`ndoteliya sosudov proteasomnoy sistemoy pri metastazirovanii raka pochki. Vestnik RONC im. N.N. Blohina RAMN. 2012; 23: 27–32. [Spirina L.V., Kondakova I.V., Usynin Y.A., Yurmazov Z. A. Expression regulation of transcription factors and endothelial growth factor by proteosomal system in patients with metastatic renal carcinoma. Journal of N. N. Blokhin Russian Cancer Research Center RAMS. 2012; 23: 27–32 (in Russian)]
  9. Yue C.X., Ma J., Zhou H.J. The effect of RhoA and proteasome inhibitor MG132 on angiogenesis in tumors. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011; 42 (4): 445–501.
  10. Juvekar A., Manna S., Ramaswami S., Chang T.P., Vu H.Y,m Ghosh C.C., Celiker M.Y,m Vancuriva I. Bortezomib induces nuclear translocation of IkBα resulting in gene-specific suppression of NF-κB-dependent transcription and induction of apoptosis in CTCL. Mol. Cancer Res. 2011; 9 (2): 183–94.
  11. Wu W.K., Volta V., Cho C.H., Wu Y.C., Li H.T., Yu Z.J., Sung J.J. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells. Biochem. Biophys. Res. Commun. 2009; 386 (4): 598–601.
  12. Hugonnet F., Fournier L., Medioni J., Smadja C., Hindie E., Huchet V., Itti E., Cuenod C.-A., Chatellier G., S. Oudard, Faraggi M. Metastatic Renal Cell Carcinoma: Relationship Between Initial Metastasis Hypoxia, Change After 1 Month’s Sunitinib, and Therapeutic Response: An 18F-luoromisonidazole PET/CT Study. J. of Nuclear Medicine. 2011; 52: 1048–55.
  13. Dornbusch J., Zacharis A.., Meinhardt M., Erdmann K., Wolff I. Analyses of Potential Predictive Markers and Survival Data for a Response to Sunitinib in Patients with Metastatic Renal Cell Carcinoma. PLOS ONE 2013; 8: 76386.
  14. Rosa R., Damiano V., Nappi L., Formisano L., Massari F., Scarpa A., Martignoni G., Bianco R., Tortora G. Angioganic and signalling proteins correlate with sensitivity to sequential treatment in renal cell cancer. Br. J. Cancer. 2013; 109 (3): 686–93.
  15. Xu C.V., Bing N.X., Ball H.A., Rajagopalan D., Sternberg C.N., Hutson T.E., de Souza P., Xue Z.G., McCann L., King K.S., Ragone L.J., Whittaker J.C., Spraggs C.F., Cardon L.R., Mooser V.E., Pandite L.N. Pazopanib efficacy in renal cell carcinoma: evidence for predictive genetic markers in angiogenesis-related and exposure-related genes. J. clin. Oncol. 2011; 29 (18): 2557–64.
  16. Ben-Shahar S., Komlosh A., Nadav E., Shaked I., Ziv T., Admon A., DeMartino G.N., Reiss Y. 26 S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate. J. of Biol. Chem. 1999; 31 (274): 21963–72.
  17. Sandmann S., Prenzel F., Shaw L. et al. Activity profile of calpains I and II in chronically infarcted rat myocardium--influence of the calpain inhibitor CAL 9961. Br. J. Pharmacol. 2002; 135 (8): 1951–8.
  18. Kohli V., Gao W., Carlos A., Clavien P.A. Calpain is a mediator of preservation-reperfusion injury in ratliver transplantation. Proc. Natl. Acad. Sci. USA. 1997; 94: 9354–9.
  19. Atencio I., Ramachandra M., Shabram P., Demers G.W. Calpain inhibitor 1 activates p53-dependent apoptosis in tumor cell lines. Cell Growth Differ. 2000; 11 (5): 247–53.
  20. Wei W., Fareed M.U., Evenson A. et al. Sepsis stimulates calpain activity in skeletal muscle by decreasing calpastatin activity but does not activate caspase-3. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005; 288 (3): 580–90.