INHIBITORS OF CARBOHYDRATE METABOLISM IN CANCER THERAPY

DOI: https://doi.org/None

D.A. Korshunov, Z.V. Korshunova, I.V. Kondakova Tomsk Cancer Research Institute, Kooperativny bystreet, 5, Tomsk, 634050, Russian Federation

Energy supply of cells can be provided through both an oxygen-dependent pathway of mitochondrial oxidative phosphorylation and oxygenindependent glycolysis. Oxidative phosphorylation in the synthesis of ATP is more efficient than in glycolysis, and respectively the presence of oxygen should lead to the activation of mitochondria and the inhibition of glycolysis (Pasteur effect). However, cancer cells and non-malignant proliferating cells are well known to be capable to activate glycolysis in the presence of adequate oxygen levels (aerobic glycolysis or Warburg effect). These metabolic changes in tumor cells provide an adequate and rapid supply of energy. Furthermore, the required intermediates can be synthesized from glucose both at a sufficient level of oxygen and in hypoxic regions of the tumor tissue. Consequently, aerobic glycolysis may be an attractive target for cancer therapy. However, for many decades tumor metabolism has attracted only insignificant attention, because any intervention on glucose metabolism was considered to be potent to lead to disturbances in normal cells. In recent years, interest to the subject being renewed, a lot of data concerning the features of carbohydrate metabolism of malignant tumors have been published. The result of these discoveries has been the detection of new potential targets for cancer chemotherapy, which is based on blocking cancer cell energy production. This article discusses the possibility of a number of compounds which affect the glycolytic enzymes as a potential targeted therapy of tumors.
Keywords: 
Warburg effect, glycolysis, inhibitors, targeted therapy

Список литературы: 
  1. Warburg O. On the origin of cancer cells. Science. 1956; 123: 309–14.
  2. Warburg O., Posener K., Negelein E. Ueber den stoffwechsel der tumoren. Biochem. Z. 1924; 152: 319–44.
  3. Porporato P. E, Dhup S., Dadhich R. K., Copetti T., Sonveaux P. Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review. Front Pharmacol. 2011; 2: 49.
  4. Zhang Y, Yang J.M.: Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer Biol. Ther. 2013; 14 (2): 81–9.
  5. Penso J., Beitner R. Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Eur. J. Pharmacol. 1998; 342: 113–7.
  6. Chiara F., Castellaro D., Marin O., Petronilli V., Brusilow W. S., Juhaszova M., Sollott S. J., Forte M., Bernardi P., Rasola A. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One. 2008; 3: 1852.
  7. Meira D.D., Marinho-Carvalho M.M., Teixeira C.A., Veiga V.F., Da Poian A.T., Holandino C., de Freitas M.S., Sola-Penna M. Clotrimazole decreases human breast cancer cells viability through alterations in cytoskeleton-associated glycolytic enzymes. Mol. Genet. Metab. 2005; 84: 354–62.
  8. Penso J., Beitner R. Detachment of glycolytic enzymes from cytoskeleton of Lewis lung carcinoma and colon adenocarcinoma cells induced by clotrimazole and its correlation to cell viability and morphology. Mol. Genet. Metab. 2002; 76: 181–8.
  9. Floridi A., Paggi M. G., Marcante M. L., Silvestrini B., Caputo A., De Martino C. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. Natl. Cancer Inst. 1981; 66: 497–9.
  10. Fanciulli M., Valentini A., Bruno T., Citro G., Zupi G., Floridi A. Effect of the antitumor drug lonidamine on glucose metabolism of adriamycin-sensitive and -resistant human breast cancer cells. Oncol. Res. 1996; 8: 111–20.
  11. Floridi A., Bruno T., Miccadei S., Fanciulli M., Federico A., Paggi M. G. Enhancement of doxorubicin content by the antitumor drug lonidamine in resistant Ehrlich ascites tumor cells through modulation of energy metabolism. Biochem. Pharmacol. 1998; 56: 841–9.
  12. De Lena M., Lorusso V., Latorre A., Fanizza G., Gargano G., Caporusso L., Guida M., Catino A., Crucitta E., Sambiasi D., Mazzei A. Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. A phase II. Eur. J. Cancer. 2001; 37: 364–8.
  13. Di Cosimo S., Ferretti G., Papaldo P., Carlini P., Fabi A., Cognetti F. Lonidamine: efficacy and safety in clinical trials for the treatment of solid. Drugs Today. 2003; 39: 157–74.
  14. Oudard S., Carpentier A., Banu E., Fauchon F., Celerier D., Poupon M.F., Dutrillaux B., Andrieu J.M., Delattre J.Y. Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma. J. Neuro-Oncol. 2003; 63: 81–6.
  15. Berruti A., Bitossi R., Gorzegno G., Bottini A., Alquati P., De Matteis A., Nuzzo F., Giardina G., Danese S., De Lena M., Lorusso V., Farris A., Sarobba M.G., DeFabiani E., Bonazzi G., Castiglione F., Bumma C., Moro G., Bruzzi P., Dogliotti L. Time to progression in metastatic breast cancer patients treated with epirubicin is not improved by the addition of either cisplatin or lonidamine: final results of a phase III study with a factorial design. J. Clin. Oncol. 2002; 20: 4150–9.
  16. Nan L., Cheng-Xiang Z., Xiao-Xing W., Liang Z., Xu M., Jia Z., Rui-Jun J., Xiu-Ying L., Wei-Yu Z., Wan-Liang L. Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways. Biomaterials. 2013; 34 (13): 3366–80.
  17. Dell’Antone P. Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent. Med. Chem. 2009; 5: 491–6.
  18. Pelicano H., Martin D.S., Xu R. H., Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006; 25: 4633–46.
  19. Pereira Da Silva A.P., El–Bacha T., Kyaw N., Dos Santos R.S., Da–Silva W.S., Almeida F.C., Da Poian A.T., Galina A. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem. J. 2009; 417: 717–26.
  20. Harris J.L., Walters M., Boyer P.D. The Enzymes. N.Y. Academic Press. 1976; 1–49.
  21. Seidler N.W. GAPDH and intermediary metabolism. Adv. Exp. Med. Biol. 2013; 985: 37–59.
  22. Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 2011; 43: 969–80.
  23. Chen J., Xie J., Jiang Z., Wang B., Wang Y., Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011; 30: 4297–306.
  24. Garcia-Alles L.F., Erni B. Synthesis of phosphoenol pyruvate (PEP) analogues and evaluation as inhibitors of PEP-utilizing enzymes. Eur. J. Biochem. 2002; 269: 3226–36.
  25. Bluemlein K., Grüning N.M., Feichtinger R.G., Lehrach H., Kofler B., Ralser M. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget. 2011; 2: 393–400.
  26. Thornburg J.M., Nelson K.K., Clem B.F., Lane A.N., Arumugam S., Simmons A., Eaton J.W., Telang S., Chesney J. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res. 2008; 10: 84.
  27. Fiume L., Manerba M., Vettraino M., Di Stefano G. Impairment of aerobic glycolysis by inhibitors of lactic dehydrogenase hinders the growth of human hepatocellular carcinoma cell lines. Pharmacology. 2010; 86: 157–62.
  28. Minutolo F., Macchia M., Granchi C., Roy S., Giannaccini G., Lucacchini A. Compounds inhibitiors of enzyme lactate dehydrogenase (LDH) and pharmaceutical compositions containing these compounds: patent WO 2011054525 Italy Università di Pisa. – Int. Appl. N.: PCT/EP2010/006740; Decl. Date 5.11.2010; Pub. Date 12.05.2011, Chem Abstr. 2011; 154: 588710.
  29. Granchi C., Roy S., Giacomelli C., Macchia M., Tuccinardi T., Martinelli A., Lanza M., Betti L., Giannaccini G., Lucacchini A., Funel N., León L.G., Giovannetti E., Peters G.J., Palchaudhuri R., Calvaresi E.C., Hergenrother P.J., Minutolo F. Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. J. Med. Chem. 2011; 54: 1599–612.
  30. Granchi C., Roy S., Del Fiandra C., Tuccinardi T., Lanza M., Betti L., Giannaccini G., Lucacchini A., Martinelli A., Macchia M., Minutolo F. Triazole-substituted N-hydroxyindol-2-carboxylates as inhibitors of isoform 5 of human lactate dehydrogenase (hLDH5). Med. Chem. Commun. 2011; 2: 638–43.
  31. Pinheiro C., Albergaria A., Paredes J., Sousa B., Dufloth R., Vieira D., Schmitt F., Baltazar F. Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology. 2010; 56: 860–7.
  32. Pinheiro C., Longatto–Filho A., Scapulatempo C., Ferreira L., Martins S., Pellerin L., Rodrigues M., Alves V. A., Schmitt F., Baltazar F. Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Arch. 2008; 452: 139–46.
  33. Mathupala S.P., Parajuli P., Sloan A.E. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery. 2004; 55: 1410–9.
  34. Dhup S., Dadhich R.K., Porporato P.E., Sonveaux P. Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr. Pharm. Des. 2012; 18: 1319–30.
  35. Gerlinger M., Santos C.R., Spencer-Dene B., Martinez P., Endesfelder D., Burrell R.A., Vetter M., Jiang M., Saunders R.E., Kelly G., Rioux–Leclercq N., Stamp G., Patard J.J., Larkin J., Howell M., Swanton C. Genome-wide RNA interference analysis of renal carcinoma survival regulators identifies MCT4 as a Warburg effect metabolic target. J. Pathol. 2012; 227 (2): 146–56.
  36. Halestrap A.P., Denton R.M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem. J. 1974; 138: 313–6.
  37. Spencer T.L., Lehninger A.L. L-lactate transport in Ehrlich ascites-tumour cells. Biochem. J. 1976; 154: 405–14.
  38. Sonveaux P., Végran F., Schroeder T., Wergin M.C., Verrax J., Rabbani Z.N., De Saedeleer C.J., Kennedy K.M., Diepart C., Jordan B.F., Kelley M.J., Gallez B., Wahl M.L., Feron O., Dewhirst M.W. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 2008; 118 (12): 3930–42.
  39. Ben-Horin H., Tassini M., Vivi A., Navon G., Kaplan O. Mechanism of action of the antineoplastic drug lonidamine: 31P and 13C nuclear magnetic resonance studies. Cancer Res. 1995; 55: 2814–21.
  40. Fang J., Quinones Q.J., Holman T.L., Morowitz M.J., Wang Q., Zhao H., Sivo F., Maris J.M., Wahl M. L.The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Mol. Pharmacol. 2006; 70: 2108–15.
  41. Murray C.M., Hutchinson R., Bantick J.R., Belfield G.P., Benjamin A.D., Brazma D., Bundick R.V., Cook I.D., Craggs R.I., Edwards S., Evans L. R., Harrison R., Holness E., Jackson A.P., Jackson C.G., Kingston L.P., Perry M.W., Ross A.R., Rugman P.A., Sidhu S.S., Sullivan M., Taylor–Fishwick D. A., Walker P.C., Whitehead Y.M., Wilkinson D.J., Wright A., Donald D.K. Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat. Chem. Biol. 2005; 1: 371–6.
  42. Guile S.D., Bantick J.R., Cheshire D.R., Cooper M.E., Davis A.M., Donald D.K., Evans R., Eyssade C., Ferguson D.D., Hill S., Hutchinson R., Ingall A.H., Kingston L.P., Martin I., Martin B.P., Mohammed R.T., Murray C., Perry M.W., Reynolds R.H., Thorne P.V., Wilkinson D.J., Withnall J. Potent blockers of the monocarboxylate transporter MCT1: novel immunomodulatory compounds. Bioorg. Med. Chem. Lett. 2006; 16: 2260–5.
  43. Bueno V., Binet I., Steger U., Bundick R., Ferguson D., Murray C., Donald D., Wood K. The specific monocarboxylate transporter (MCT1) inhibitor, AR-C117977, a novel immunosuppressant, prolongs allograft survival in the mouse. Transplantation. 2007; 84: 1204–7.
  44. Pahlman C., Malm H., Qi Z., Veress B., Ferguson D., Bundick R., Murray C., Donald D., Ekberg H. Operational tolerance in nonvascularized transplant models induced by AR-C117977, a monocarboxylate transporter inhibitor. Transplantation. 2008; 86: 1135–8.
  45. Ovens M.J., Davies A.J., Wilson M.C., Murray C.M., Halestrap A. P. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7–10. Biochem. J. 2010; 425: 523–30.
  46. Plummer R. CRUKD/12/004: A phase I pharmacokinetic and pharmacodynamic first in class study of AZD3965, a potent Monocarboxylate Transporter 1 inhibitor (MCT1) in advanced cancer including prostate cancer & NHL expressing MCT1. http://science.cancerresearchuk.org. Date of application: 03.07.14.
  47. Kobayashi M., Otsuka Y., Itagaki S., Hirano T., Iseki K. Inhibitory effects of statins on human monocarboxylate transporter 4. Int. J. Pharm. 2006; 317: 19–25.
  48. Hodel C. Myopathy and rhabdomyolysis with lipid-lowering drugs. Toxicol. Lett. 2002; 128: 159–68.
  49. Izumi H., Takahashi M., Uramoto H., Nakayama Y., Oyama T., Wang K. Y., Sasaguri Y., Nishizawa S., Kohno K. Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci. 2011; 102: 1007–