STEROID SENSITIVITY IN BRONCHIAL ASTHMA

DOI: https://doi.org/None

S.V. Chubarova (1), I.А. Yakovchuk (2), А.Yu. Kraposhina (1), I.A. Soloveva (1), I.V. Demko (1), A.B. Salmina (1) 1 -Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky, Partizana Zheleznyaka, 1, Krasnoyarsk, 660022, Russian Federation; 2 -Scientific Research Institute of Medical Problems of the North, Partizana Zheleznyaka, 1, Krasnoyarsk, 660022, Russian Federation

The main purpose of the treatment of bronchial asthma is achievement and maintenance of the control over the symptoms of disease at optimal level. For this purpose in terms of basic therapy there is used inhalation of as glucocorticosteroids as well systemic glucocorticosteroids if necessary. However in a large number of patients symptoms of asthma are controlled dissatisfactory in spite of existence of the high performance therapy. The steroid resistance is the major barrier of effective treatment. In this literature review there are presented the most studied causes of the decline of sensitivity to glucocorticosteroids. According to modern views there are two types of steroid resistance in bronchial asthma: primary and secondary. The primary steroid resistance to glucocorticosteroids, as a rule, is a result of genetic polymorphism, disruption of the affinity and nuclear translocation of the glucocorticosteroid receptor. The secondary steroid resistance to glucocorticosteroids is acquired, develops in the course of the treatment and can undergo miosis. Furthermore it may be the corollary of the prolonged exposure of a variety of inflammatory factors. Inasmuch as the resistance to anti-inflammatory effect of glucocorticoids in bronchial asthma and other chronic inflammatory diseases is poorly understood, it is therefore important to study mechanisms of the development of steroid resistance. A clear understanding of the molecular mechanisms of the reduction of steroid sensitivity will allow in the near future to identify both markers of steroid resistance and prognostic criteria for the evaluation of the effectiveness of treatment in patients with bronchial asthma. More recently, P-glycoprotein is considered as a potential target to overcome drug resistance as a result of the use of modulators of its activity. This opens new perspectives in the treatment and gives the opportunity to deliver and improve the rational therapy.
Keywords: 
bronchial asthma, steroid resistance, steroid sensitivity, glucocorticosteroids

Список литературы: 
  1. Global`naya strategiya lecheniya i profilaktiki bronhial`noy astmy (peresmotr 2011 g.). Pod red. A.S. Belevskogo. M.: Ros. respiratornoe o-vo, 2012; 108 s. [Global Under the editorship of A.S. Belevsky. M.: Russian respiratory society, 2012; 108 (in Russian)]. Initiative of treatment and prevention of bronchial asthma (revision of 2011).
  2. Olin J.T., Wechsler M.E. Asthma: pathogenesis and novel drugs for treatment. B.M.J. 2014; 24: 349.
  3. Desfougeres J.L., Sohier B., Freedman D., Annunziata K., Lemoine A., Poterre M. Has asthma control improved since AIRE? Results of a survey in 5 countries. Eur. Respir. J. 2007; 30 (51): 249.
  4. Pedersen S.E., Bateman E.D., Bousquet J., Busse W.W., Yoxall S., Clark T.J. Determinants of response to fluticasone propionate and salmeterol/fluticasone propionate combination in the Gaining Optimal Asthma control study. J. Allergy Clin. Immunol. 2007; 120 (5): 1036–42.
  5. Luhadia S.K. Steroid resistant asthma. J. Assoc. Physicians India. 2014; 62 (3): 38–40.
  6. Nino G., Hu A., Grunstein J.S., Kaltman D., Grunstein M.M. Mechanism of glucocorticoid protection of airway smooth muscle from proasthmatic effects of long-acting beta2-adrenoceptor agonist exposure. Allergy Clin. Immunol. 2010; 125: 1020–7.
  7. Barnes P.J. Glucocorticosteroids: current and future directions. Br. J. Pharmacol. 2011; 163 (1): 29–43.
  8. Mercado N., Hakim A., Kobayashi Y., Meah S., Usmani O.S., Chung K.F., Barnes P.J., Ito K. Restoration of corticosteroid sensitivity by p38 mitogen activated protein kinase inhibition in peripheral blood mononuclear cells from severe asthma. PLoS One. 2012; 7 (7): e41582.
  9. Barnes P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013; 131 (3): 636–45.
  10. Mironova Zh.A. Molekulyarnye mehanizmy steroidorezistentnosti pri bronhial`noy astme: rol` interleykinov 4 i 13. Kazanskiy medicinskiy zhurn. 2011; 6: 880–2. [Mironova Zh.A. Molecular mechanisms of corticosteroid resistance at bronchial asthma: role of interleykin 4 and 13. Kazanskij medicinskij zhurn. 2011; 6: 880–2 (in Russian)]
  11. Reddy D., Little F.F. Glucocorticoid-resistant asthma: more than meets the eye. J. Asthma. 2013; 50 (10): 1036–44.
  12. Priftis K.N., Papadimitriou A., Nicolaidou P., Chrousos G.P. Dysregulation of the stress response in asthmatic children. Allergy. 2009; 64 (1): 18–31.
  13. Barnes P.J., Adcock I.M. Glucocorticoid resistance in inflammatory diseases. Lancet. 2009; 373 (9678): 1905–17.
  14. Trevor J.L., Deshane J.S. Refractory asthma: mechanisms, targets, and therapy. Allergy. 2014; 69 (7): 817–27.
  15. Schoneveld J.L., Fritsch-Stork R.D., Bijlsma J.W. Nongenomic glucocorticoid signaling: new targets for immunosuppressive therapy? Arthritis Rheum. 2011; 63 (12): 3665–7.
  16. Zykov K.A., Agapova O.Yu. Ingalyacionnye beta-agonisty i M-holinolitiki pri bronhial`noy astme s poziciy receptornyh vzaimodeystviy. Trudnyy pacient. 2011; 11: 16–20.[Zykov K.A., Agapova O. Yu. Inhaled short-acting beta-agonist and M-holinolitiks at bronchial asthma from positions of receptor interactions. Trudnyj pacient. 2011; 11: 16–20 (in Russian)]
  17. Wang Y., Tong C., Wang Z., Wang Z., Mauger D., Tantisira K.G., Israel E., Szefler S.J., Chinchilli V.M., Boushey H.A., Lazarus S.C., Lemanske R.F., Wu R. Pharmacodynamic genome-wide association study identifies new responsive loci for glucocorticoid intervention in asthma. Pharmacogenomics J. 2015; DOI: 10.1038 / tpj.2014.83.
  18. Pujols L., Mullol J., Picado C. Importance of glucocorticoid receptors in upper and lower airways. Front Biosci (Landmark Ed). 2010; 1 (15): 789–800.
  19. Kobayashi Y., Mercado N., Barnes P.J., Ito K. Defects of protein phosphatase 2A causes corticosteroid insensitivity in severe asthma. PLoS One. 2011; 6: 27627.
  20. Jang A.S. Steroid response in refractory asthmatics. Korean J. Intern. Med. 2012; 27 (2): 143–8.
  21. Vazquez-Tello A., Halwani R., Hamid Q., Al-Muhsen S. Glucocorticoid receptor-beta up-regulation and steroid resistance induction by IL-17 and IL-23 cytokine stimulation in peripheral mononuclear cells. J. Clin. Immunol. 2013; 33 (2): 466–78.
  22. Ingawale D.K., Mandlik S.K., Patel S.S. An emphasis on molecular mechanisms of anti-inflammatory effects and glucocorticoid resistance. J. Complement Integr Med. 2015; 12 (1): 1–13.
  23. Gupta A., Dimeloe S., Richards D.F., Chambers E.S., Black C., Urry Z., Ryanna K., Xystrakis E., Bush A., Saglani S., Hawrylowicz C.M. Defective IL-10 expression and in vitro steroid-induced IL-17A in paediatric severe therapy-resistant asthma. Thorax. 2014; 69 (6): 508–15.
  24. Urry Z., Chambers E.S., Xystrakis E., Dimeloe S., Richards D.F., Gabryšová L., Christensen J., Gupta A., Saglani S., Bush A, O’Garra A., Brown Z., Hawrylowicz C.M.: The role of 1a,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3(+) and IL-10(+) CD4(+) T cells. Eur. J. Immunol. 2012; 42: 2697–708.
  25. Alcorn J.F., Crowe C.R., Kolls J.K. Th17 cells in asthma and COPD. Annu. Rev. Physiol. 2010; 72: 495–516.
  26. Nanzer A.M., Chambers E.S., Ryanna K., Richards D.F., Black C., Timms P.M., Martineau A.R., Griffiths C.J., Corrigan C.J., Hawrylowicz C.M. Enhanced production of IL-17A in patients with severe asthma is inhibited by 1α,25-dihydroxyvitamin D3 in a glucocorticoid-independent fashion. J. Allergy Clin. Immunol. 2013; 132 (2): 297–304.
  27. Halwani R., Al-Kufaidy R., Vazquez-Tello A., Pureza M.A., BaHammam A.S., Al-Jahdali H., Alnassar S.A., Hamid Q., Al-Muhsen S. IL-17 Enhances Chemotaxis of Primary Human B Cells during Asthma. PLoS One. 2014; 9 (12): e114604.
  28. Vazquez-Tello A., Semlali A., Chakir J., Martin J.G., Leung D.Y., Eidelman D.H., Hamid Q. Induction of glucocorticoid receptor-beta expression in epithelial cells of asthmatic airways by T-helper type 17 cytokines. Clin. Exp. Allergy. 2010; 40: 1312–22.
  29. Juliano R.L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta. 1976; 455 (1): 152–62.
  30. Henmi K., Yoshida M., Yoshikawa N., Hirano T. P–glycoprotein functions in peripheral–blood CD4+ cells of patients with systemic lupus erythematosus. Biol. Pharm. Bull. 2008; 31 (5): 873–8.
  31. Kopriva F., Dzubak P., Potesil J., Hajduch M. The anti-inflammatory effects of inhaled corticosteroids versus antileukotrienes on the lymphocyte P-glycoprotein (PGP) expression in asthmatic children. J. Asthma. 2009; 46 (4): 366–70.
  32. Demko I.V., Salmina A.B., Morgun A.V., Malinovskaya N.A. E`kspressiya P-glikoproteina na limfocitah perifericheskoy krovi pri tyazhelyh formah bronhial`noy astmy i ego rol` v opredelenii chuvstvitel`nosti k terapii glyukokortikosteroidami. Pul`monologiya. 2007; 3: 41–6.[Demko I.V., Salmina A.B., Morgun A.V., Malinovskay N.A. Expressiya of a P-glycoprotein on lymphocytes of peripheral blood at heavy forms of bronchial asthma and its role in determination of sensitivity to therapy by glucocorticosteroids. Pul’monologija. 2007; 3: 41–6 (in Russian)]
  33. Chubarova S.V., Kraposhina A.Yu., Sobko E.A., Demko I.V., Salmina A.B. Fiziologicheskie i klinicheskie aspekty R-glikoproteina. Byulleten` fiziologii i patologii dyhaniya. 2012; 45: 91–7.[Chubarova S.V., Kraposhin A.Yu., Sobko E.A., Demko I.V., Salmina A.B. Physiological and clinical aspects of the R-glycoprotein. Bjulleten’ fiziologii i patologii dyhanija. 2012; 45: 91–7 (in Russian)]