POLYMORPHISM ANALYSIS OF THE ACTA2 GENE BY PYROSEQUENCING IN PATIENTS WITH NON-FAMILIAL THORACIC AORTIC ANEURYSMS

DOI: https://doi.org/None

V.A. Zhukov (1,2), A.I. Zhernakov (1,2), N.D. Gavrilyuk (1), A.G. Pinaev (2), E.E. Andronov (2), V.E. Uspenskiy (1), O.B. Irtyuga (1), O.M. Moiseeva (1) 1 -Federal Almazov Medical Research Centre, Akkuratova street, 2, St. Petersburg, 197341, Russian Federation; 2 -All-Russia Research Institute for Agricultural Microbiology, Pushkin, Podbelsky Shosse , 3, St. Petersburg, 196608, Russian Federation

Introduction. The ACTA2 gene encodes α-actin in aortic smooth muscle cells, and its mutations may cause thoracic aortic aneurysms. Analysis of ACTA2 polymorphism can be used in a complex risk assessment of non-familial thoracic aortic aneurysms. The aim of the study. To examine the contribution of ACTA2 allelic polymorphism to the development of non-familial thoracic aortic aneurysms. Methods. The protein-coding exons (from 2nd to 9th) and the adjacent intronic regions of ACTA2 were amplified from pooled DNA samples from 83 patients with non-familial aortic aneurysm and 34 healthy controls and sequenced on GS Junior (Roche). Results. In both groups SNPs were detected in introns, but not in exons. Conclusion. No polymorphism was found in coding regions of ACTA2 in 83 patients with non-familial thoracic aortic aneurysms. Further analysis in larger cohorts of patients will clarify the feasibility of sequencing ACTA2 in cases of non-familial aortic aneurysms.
Keywords: 
NGS (Next Generation Sequencing), ACTA2, aortic aneurysms, gene polymorphism

Список литературы: 
  1. Hoyert D.L., Heron M.P., Murphy S.L., Kung H.-C. Deaths: final data for 2003. National vital statistics reports. 2006; 54 (13): 1–120.
  2. Chau K.H., Elefteriades J.A. Natural history of thoracic aortic aneurysms: size matters, plus moving beyond size. Progress in Cardiovascular Diseases. 2013; 56 (1): 74–80.
  3. Hagan P.G., Nienaber C.A., Isselbacher E.M., Bruckman D., Karavite D.J., Russman P.L., Evangelista A., Fattori R., Suzuki T., Oh J.K. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. Jama. 2000; 283 (7): 897–903.
  4. Ehrlich M.P., Ergin M.A., Mccullough J.N., Lansman S.L., Galla J.D., Bodian C.A., Apaydin A., Griepp R.B. Results of immediate surgical treatment of all acute type A dissections. Circulation. 2000; 102 (3): 248–52.
  5. Hiratzka L.F., Bakris G.L., Beckman J.A., Bersin R.M., Carr V.F., Casey D.E., Eagle K.A., Hermann L.K., Isselbacher E.M., Kazerooni E.A. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. J. of the American College of Cardiology. 2010; 55 (14): 27–129.
  6. Pomianowski P., Elefteriades J.A. The genetics and genomics of thoracic aortic disease. Annals of Cardiothoracic Surgery. 2013; 2 (3): 271–9.
  7. Guo D.-C., Pannu H., Tran-Fadulu V., Papke C.L., Yu R.K., Avidan N., Bourgeois S., Estrera A.L., Safi H.J., Sparks E. Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nature genetics. 2007; 39 (12): 1488–93.
  8. Bergeron S.E., Wedemeyer E.W., Lee R., Wen K.-K., Mckane M., Pierick A.R., Berger A.P., Rubenstein P.A., Bartlett H.L. Allele-specific effects of thoracic aortic aneurysm and dissection α-smooth muscle actin mutations on actin function. Journal of Biological Chemistry. 2011; 286 (13): 11356–69.
  9. Glotov A.S., Vashukova E.S., Danilova M.M., Pakin V.S., Masharskiy A.E`., Fedotov P.V., Zaynulina M.S., Arzhanova O.N., Mozgovaya E.V., Baranov V.S. Sekvenirovanie novogo pokoleniya (NGS) dlya izucheniya gena ACVR2A u beremennyh s gestozom. Molekulyarnaya medicina. 2014; 5: 33–40.[Glotov A.S., Vashukova E.S., Danilova M.M., Masharsky A.E., Fedotov P.V., Zaynulina M.S., Arzhanova O.N., Mozgovaya E.V., Baranov V.S. Application of NGS method for ACVR2A gene sequencing in women with preeclampsia. Molekulyarnaya Meditsina. 2014; 5: 33–40]
  10. Faita F., Vecoli C., Foffa I., Andreassi M.G. Next generation sequencing in cardiovascular diseases. World Journal of Cardiology. 2012; 4 (10): 288–95.
  11. Sikkema-Raddatz B., Johansson L.F., Boer E.N., Almomani R., Boven L.G., Berg M.P., Spaendonck-Zwarts K.Y., Tintelen J.P., Sijmons R.H., Jongbloed J.D. Targeted Next-Generation Sequencing can replace Sanger sequencing in clinical diagnostics. Human Mutation. 2013; 34 (7): 1035–42.
  12. Droege M., Hill B. The Genome Sequencer FLX™ System–Longer reads, more applications, straight forward bioinformatics and more complete data sets. J. of Biotechnology. 2008; 136 (1): 3–10.
  13. Roder C., Peters V., Kasuya H., Nishizawa T., Wakita S., Berg D., Schulte C., Khan N., Tatagiba M., Krischek B. Analysis of ACTA2 in European Moyamoya disease patients. European J. of Paediatric Neurology. 2011; 15 (2): 117–22.
  14. Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012; 9 (4): 357–9.
  15. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25 (16): 2078–9.
  16. Guo D.-C., Papke C.L., Tran-Fadulu V., Regalado E.S., Avidan N., Johnson R.J., Kim D.H., Pannu H., Willing M.C., Sparks E. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. The American J. of Human Genetics. 2009; 84 (5): 617–27.
  17. Renard M., Callewaert B., Baetens M., Campens L., Macdermot K., Fryns J.-P., Bonduelle M., Dietz H.C., Gaspar I.M., Cavaco D. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFβ signaling in FTAAD. International J. of Cardiology. 2013; 165 (2): 314–21.