STAPHYLOCOCCUS AUREUS TOXINS AND TOXOIDS: ROLE IN PATHOGENESIS AND PREVENTION OF STAPHYLOCOCCAL INFECTIONS

DOI: https://doi.org/None

O.A. Dmitrenko N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Gamaleya str. 18, Moscow, 123098, Russian Federation

Staphylococcus aureus – the pathogenic microorganism that can cause as well hospital as community-acquired diseases. The emergence and subsequent spread of strains resistant to many antimicrobial agents, and, above all, methicillin-hospital strains (HA-MRSA) and highly virulent community-acquired (CA-MRSA), capable of causing fatal infections, is a major problem even for countries with a developed health system. The presence in a microorganism of the ability to acquire resistance to all antimicrobial preparations newly introduced into clinical practice, making the need for new alternative approaches to the prevention and treatment of staphylococcal infections to be urgent. One such approach is the use of specific immune-biological medications that increase the resistance of host to a staphylococcal infections. The history of these drugs has more than one decade. In recent years, by analogy with the success in the preparation of effective vaccines against infections caused by Streptococcus pneumonia, Neisseria meningitides and Hemophilus influenzae, researchers' attention was drawn to the surface antigens of S. aureus. However, setbacks along this way, caused largely due to the significant structural diversity of the microbial cell surface components from different genetic lineages of S. aureus, make to continue the search for new molecular targets for inclusion in the composition of vaccine preparations. As alternative, apparently there may become excreted products of Staphylococcus aureus, playing a key role in the infectious process. This review focuses on recent advances on elucidating the pathogenetic role and mechanism of the action of several groups of staphylococcal toxins. There are presented experimental proofs of the principle possibility of the creation of preventive and therapeutic drugs based on staphylococcal toxoids and antitoxic antibodies. There is proposed the design for a vaccine preparation based on data on the population diversity of S. aureus in the Russian Federation.
Keywords: 
Staphylococcus aureus, toxins, pathogenesis, toxoids, immune prophylaxis

Список литературы: 
  1. Deryabin D.G. Stafilokokki: e`kologiya i patogennost`. Ekaterinburg: UrO RAN, 2000; 239.[Deryabin D.G. Staphylococci: ecology and pathogenicity. Ekaterinburg, Uro RAN, 2000; 239 (in Russian)]
  2. Brown A.F., Leech J., Rogers T.R., McLoughlin R.M. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design. Frontiers in Immunology, 2014; 4, article 507. doi:10.3389/fimmi.2013.00507.
  3. Dmitrenko O.A. Rod Staphylococcus V kn. «Opportunisticheskie infekcii: vozbuditeli i e`tiologicheskaya diagnostika». Rukovodstvo po medicinskoy mikrobiologii. Kniga III, tom 1. Pod redakciey A.S. Labinskoy, N.N. Kostyukovoy. M.: Binom, 2013: 31–87. [Dmitrenko O.A. Staphylococcus genus. In the book «Opportunistic infections: pathogens and etiologic diagnosis». Manual of Medical Microbiology. Book III, Volume 1. Edited by A.S. Labinskaya, N.N. Kostyukova. M.: Bean, 2013: 31–87 (in Russian)]
  4. Rigby K.M., DeLeo F.R. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin. Immunopathol. 2012; 34: 237–59. doi 10.1007/s00281-011-0295-3
  5. Sepsis v nachale XXI veka. Klassifikaciya, kliniko-diagnosticheskaya koncepciya i lechenie. Patologo-anatomicheskaya diagnostika: Prakticheskoe rukovodstvo. Pod red. V.S. Savel`eva, B.R. Gel`fand. M.: Littera, 2006; 172.[Sepsis in the beginning of the XXI century. Classification, clinical and diagnostic concept and treatment. Postmortem diagnosis: A Practical Guide. Edited by V.S. Savelyev, B.R. Gelfand. M.: Littera, 2006; 172 (in Russian)]
  6. Perl M., Chung Chun-Chiang, Swan R., Ayala A. Role of Programmed Cell Death in the Immunopathogenesis of Sepsis. Drug Discov. Today Dis. Mech. 2007; 4 (4): 223–30.
  7. Reichwein J., Hugo F., Roth M., Sinner A., Bhakdi S. Quantitative analysis of the binding and oligomerization of staphylococcal alpha-toxin in target erythrocyte membranes. Infect. Immun. 1987; 55 (2): 2940–4.
  8. Song L., Hobaugh M.R., Shustak C., Cheley S., Bayley H., Gouaux J.E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996; 274 (5294): 1859–66.
  9. Malachowa N., DeLeo F.R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 2010; 67 (18): 3057–71. doi: 10.1007/s00018-010-0389-4.
  10. Gray G.S., Kehoe M. Primary sequence of the alpha-toxin gene from Staphylococcus aureus Wood 46. M. Infect. Immun. 1984; 46 (2): 615–8.
  11. Xiong Y.Q., Willard J., Yeaman M.R., Cheung A.L., Bayer A.S. Regulation of Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. J. Infect. Dis. 2006; 194 (9): 1267–75.
  12. Cooper L.Z., Madoff M.A., Weinstein L. Heat stability and species range of purified staphylococcal alpha-toxin. J. Bacteriol. 1966; 91 (5):1686–92.
  13. Kumar S., Lindorfer R.K. The characterization staphylococcal toxins. I The electrophoretic migration of the alphahemolytic, dermonecrotic, lethal and leucocidal activities of crude toxin. J. Exp. Med. 1962; 115: 1095–106.
  14. Nygaard T.K., Pallister K.B., DuMont A.L., De.Wald M., Watkins R.L., Pallister E.Q., Malone C., Griffith S. Horswill A.R., Torres V.J., Voyich J.M. Alpha-toxin induces programmed cell death of human T cells, B cells, and monocytes during USA300 infection. PLoS One. 2012; 7: e36532.
  15. Powers M.E., Kim H.K., Wang Y., Bubeck Wardenburg B. J. Adam10 mediates vascular injury induced by Staphylococcus aureus alpha-hemolysin. J. Infect. Dis. 2012; 206 (3): 352–6.
  16. Adhikari R.P., Ajao A.O., Aman M.J., Karauzum H., Sarwar J., Lydecker A.D., Johnson J.K., Nguyen C., Chen W.H., Roghmann M.C. Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive Staphylococcus aureus infections. J. Infect. Dis. 2012; 206 (6): 915–23.
  17. Fritz S.A., Tiemann K.M., Hogan P.G., Epplin E.K., Rodriguez M., Al-Zubeidi D.N., Bubeck Wardenburg J., Hunstad D.A. A serologic correlate of protective immunity against community-onset Staphylococcus aureus infection. Clin. Infect. Dis. 2013, 56 (11): 1554–61.
  18. DeLeo F.R., Kennedy A.D., Chen L., Bubeck Wardenburg J., Kobayashi S.D., Mathema B., Braughton K.R., Whitney A.R., Villaruz A.E., Martens C.A., Porcella S.F., McGavin M.J., Otto M., Musser J.M., Kreiswirth B.N. Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus. Proc. Natl. Acad. Sci. USA. 2011; 108 (44): 18091–6.
  19. Valeva A., Hellmann N., Walev I. Evidence that clustered phosphocholine head groups serve assites for binding and assembly of an oligomeric protein pore. J. Biol. Chem. 2006; 281 (36): 26014–21.
  20. Wilke G.A., Bubeck Wardenburg J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc. Natl. Acad. Sci. USA. 2010; 107 (30): 13473–8.
  21. Maretzky T., Reiss K., Ludwig A., Buchholz J., Scholz F., Proksch E., de Strooper B., Hartmann D.,Saftig P. .Adam10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc. Natl. Acad. Sci. USA. 2005; 102 (26): 9182–7.
  22. Parker D., Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin. Immunopathol. 2012; 34 (2): 281–97.
  23. Rose F., Dahlem G., Guthmann B., Grimminger F., Maus U., Hänze J., Duemmer N., Grandel U., Seeger W., Ghofrani H.A. Mediator generation and signaling events in alveolar epithelial cells attacked by S. aureus alpha-toxin Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 282 (2): 207–14.
  24. Kebaier C., Chamberland R.R., Allen I.C., Gao X., Broglie P.M., Hall J.D., Jania C., Doerschuk C.M., Tilley S.L., Duncan J.A. Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the nlrp3 inflammasome. J. Infect. Dis. 2012; 205 (5): 807–17.
  25. Cho J.S., Guo Y., Ramos R.I., Hebroni F., Plaisier S.B., Xuan C., Granick J.L., Matsushima H., Takashima A., Iwakura Y., Cheung A.L., Cheng G., Lee D.J., Simon S.I,. Miller L.S. Neutrophil-derived il-1beta is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog. 2012; 8 (11): e1003047.
  26. Lizak M., Yarovinsky T.O. Phospholipid scramblase 1 mediates type I interferon-induced protection against staphylococcal alpha-toxin. Cell Host Microbe. 2012; 11 (1): 70–80.
  27. Frank K.M., Zhou T., Moreno-Vinasco L., Hollett B., Garcia J.G., Bubeck Wardenburg J. Host response signature to Staphylococcus aureus alpha-hemolysin implicates pulmonary th17 response. Infect. Immun. 2012; 80 (9): 3161–9.
  28. Hruz P., Zinkernagel A.S., Jenikova G., Botwin G.J., Hugot J.P., Karin M., Nizet V., Eckmann L. Nod2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation. Proc. Natl. Acad. Sci. USA. 2009; 106 (31): 12873–8.
  29. Doery H.M., Magnusson B.J., Cheyne I.M. and Sulasekharam J. A. Phospholipase in staphylococcal toxin which hydrolyses sphingomyelin. Nature. 1963; 198: 1091–2.
  30. Ira J., Jonston L.J. Sphingomielinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer mebranes. Biochim. Biophis. Acta. 2008; 1778 (1): 185–97.
  31. van Wamel W.J., Rooijakkers S.H., Ruyken M., van Kessel K.P., van Strijp J.A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriology. 2006; 188 (4): 1310–5.
  32. Huseby M.J., Kruse A.C., Digre J. Structure and biological activities of beta toxin from Staphylococcus aureus. Proc. Natl. Acad. Sci USA. 2010; 107: 14407–12.
  33. Kaneko J., Kamio Y. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci. Biotechnol. Biochem. 2004; 68 (5): 981–1003.
  34. Alonzo F. 3rd, Kozhaya L., Rawlings S.A., Reyes-Robles T., DuMont A.L., Myszka D.G., Landau N.R., Unutmaz D., Torres V.J. CCR5 is a receptor for staphylococcus aureus leukotoxin ED. Nature. 2013; 493 (7430): 51–5.
  35. Sugawara N., Tomita T., Sato T., Kamio Y. Assembly of staphylococcus aureus leukocidin into a pore-forming ring-shaped oligomer on human polymorphonuclear leukocytes and rabbit erythrocytes. Biosci. Biotechnol. Biochem. 1999; 63 (5): 884–91.
  36. Los F.C., Randis T.M., Aroian R.V., Ratner A.J. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 2013; 77 (2): 173–207.
  37. Aman M.J., Adhikari R.P. Staphylococcal Bicomponent Pore-Forming Toxins: Targets for Prophylaxis and Immunotherapy. Toxins. 2014; 6 (3): 950–72.
  38. McCarthny A.J., Linsday J.A. Genetic variation in Staphylococcus aureus surface innate immune evasion genes is lineage-associated: implications for vaccine design and host-pathogen interactions. BMC Microbiology. 2010; 10: 173. http:// www.biomedcentral.com/1471-2180/10/173.
  39. Stegger M., Wirth T., Andersen P.S., Skov R.L., De Grassi A., Simões P.M., Tristan A., Petersen A., Aziz M., Kiil K., Cirković I., Udo E.E., del Campo R., Vuopio-Varkila J., Ahmad N., Tokajian S., Peters G., Schaumburg F., Olsson-Liljequist B., Givskov M., Driebe E.E., Vigh H.E., Shittu A., Ramdani-Bougessa N., Rasigade J.P., Price L.B., Vandenesch F., Larsen A.R., Laurent F. Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus. Mbio. 2014; 5 (5): e01044-14.
  40. Spaan A.N., Henry T., van Rooijen W.J., Perret M., Badiou C., Aerts P.C,. Kemmink J., de Haas C.J., van Kessel K.P., Vandenesch F., Lina G., van Strijp J.A.. The staphylococcal toxin panton-valentine leukocidin targets human C5a receptors. Cell Host Microbe. 2013; 13 (5): 584–94.
  41. Morinaga N., Kaihou Y., Noda M. Purification, cloning and characterization of variant luke-lukd with strong leukocidal activity of staphylococcal Bi-component leukotoxin family. Microbiol. Immunol. 2003; 47 (1): 81–90.
  42. Malachowa N., Kobayashi S.D., Freedman B. et al. Staphylococcus aureus leukotoxin Gh promotes formation of neutrophil extracellular traps. Malachowa N., Kobayashi S.D., Freedman B., Dorward D.W., DeLeo F.R. J. Immunol. 2013; 191 (12): 6022–9.
  43. Reyes-Robles T, Alonzo F., Kozhaya L., Lacy D.B., Unutmaz D., Torres V.J. Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe. 2013; 14 (4): 453–9.
  44. Dumont A.L., Nygaard T.K., Watkins R.L., Smith A., Kozhaya L., Kreiswirth B.N., Shopsin B., Unutmaz D., Voyich J.M., Torres V.J. Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol. Microbiol. 2011; 79 (3): 814–25.
  45. Dalla Serra M., Coraiola M., Viero G., Comai M., Potrich C, Ferreras M., Baba-Moussa L., Colin D.A., Menestrina G., Bhakdi S., Prévost G. Staphylococcus aureus bicomponent gamma-hemolysins, Hlga, Hlgb, and Hlgc can form mixed pores containing all components. J. Chem. Inf. Model. 2005; 6: 1539–45.
  46. Siqueira J.A., Speeg-Schatz C., Freitas F.I., Sahel J., Monteil H., Prévost G. Channel-Forming leucotoxins from Staphylococcus aureus cause severe inflammatory reactions in a rabbit eye model. J. Med. Microbiol. 1997; 46: 486–94.
  47. Chatterjee S.S., Chen L., Joo H.S., Cheung G.Y., Kreiswirth B.N., Otto M. Distribution and regulation of the mobile genetic element-encoded phenol-soluble modulin PSM-mec in methicillin-resistant Staphylococcus aureus. PloS ONE. 2011; 6: e28781.doi:10.1371/jornal.pone.0028781
  48. Verdon J., Girardin N., Lacombe C., Berjeaud J.M., Héchard Y. Delta-hemolysin, an update on a membrane-interacting peptide. Peptides. 2009; 30 (4): 817–23.
  49. Argudin M.A., Mendoza M.C., Rodicio M.R. Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2010; 2 (7): 1751–73; doi:103390/toxins2071751
  50. Stranberg K.L, Rotsschafer J.H., Vetter S.M., Buonpane R.A., Kranz D.M., Schlievert P.M. Staphylococcal superantigens cause lethal pulmonary disease in rabbits. J. Infect. Dis. 2010; 202 (11): 1690–7.
  51. Dinges M.M., Orwin P.M., Schlievert P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000; 13 (1): 16–34.
  52. Vojtov N., Ross H.F., Novick R.P. Global repression of exotoxin synthesis by staphylococcal superantigens. Proc. Natl. Acad. Sci USA. 2002; 99 (15): 10102–7.
  53. Dauwalder O., Thomas D., Ferry Tr., Debard A.L.,Badiou C., Vandenesch F., Etienne J., Lina G, Monneret G. Comparative inflammatory properties of staphylococcal superantigenic entertoxins SEA and SEG: implications for septic shock. J. Leukoc. Biol. 2006; 80 (4): 753–8.
  54. McCarthny A.J., Linsday J.A. Genetic variation in surface and immune evasion genes is lineage associated: implication for vaccine design and host-pathogen interactions BMC Microbiology. 2010:173 http:www.biomedcentral.com/1471-2180/10/173
  55. Dmitrenko O.A. Molekulyarno-geneticheskie aspekty e`pidemiologii vnutribol`nichnyh infekciy, vyzvannyh predstavitelyami vida Staphylococcus aureus, ustoychivymi k meticillinu/oksacillinu. Avtoreferat diss. dokt. med nauk. M., 2008; 43. [Dmitrenko O.A. Molecular genetic aspects of the epidemiology of nosocomial infections caused by members of the species Staphylococcus aureus, methicillin-resistant/oxacillin resistant. Avtoreferat diss. dokt. med. nauk. M., 2008; 43 (in Russian)]
  56. Romanov A.V., Chernov E.A., E`ydel`shtein M.V. Molekulyarnaya e`pidemiologiya vnutribol`nichnyh stafilokokkov v stacionarah raznyh regionov Rossii. Molekulyarnaya medicina. 2013; 4: 55–64.[Romanov A.V., Chernov E.A., Edelstein M.V. Molecular epidemiology of nosocomial staphylococci in hospitals in different regions of Russia. Molekulyarnaya medicina. 2013; 4: 55–64 (in Russian)]
  57. Dmitrenko O., Gostev V., Kudryavtseva V., Gracheva M., Sidorenko S. Draft genome sequence of methicillin-resistant Staphylococcus aureus (MRSA) representative of predominant MRSA sequence type 8 circulating in Moscow, Russia. http://www.escmid.org/escmid_library/online_lecture_library 2014, O 113.
  58. Yamamoto T., Takano T., Higuchi W., Iwao Y., Singur O., Reva I., Otsuka Y., Nakayashiki T., Mori H., Reva G., Kuznetsov V., Potapov V. Comparative genomics and drug resistance of a geographic variant of ST239 methicillin-resistant Staphylococcus aureus emerged in Russia. PLoS ONE. 2012; 7 (1): e29187.
  59. Dmitrenko O., Lavrova N., Alexandrova I., Ghilina S., Karabak V. , Rosanova S., Gintsburg A. Clin. Microbiol. Infect. 2010; 16 (Iss. Suppls. 2): 291.
  60. Adhikari R.P., Karauzum H., Sarwar Abaandou L., Mahmoudieh M., Boroun A.R., Vu H., Nguyen T., Devi V.S., Shulenin S., Warfield K.L., Aman M.J. Novel structurally designed vaccine for S. aureus alpha-hemolysin: Protection against bacteremia and pneumonia. PLoS One. 2012; 7 (6): e38567.
  61. Spaulding A.R., Lin Y.C., Merriman J.A., Brosnahan A.J., Peterson M.L., Schlievert P.M. Immunity to Staphylococcus aureus secreted proteins protects rabbits from serious illnesses. Vaccine. 2012; 30 (34): 5099–109.
  62. Karauzum H., Adhikari R.P., Sarwar J., Devi V.S., Abaandou L., Haudenschild C., Mahmoudieh M., Boroun A.R., Vu. H., Nguyen T.,Warfield K.L., Shulenin S., Aman M.J. Structurally designed attenuated subunit vaccines for Staphylococcus aureus Luks-PV and Lukf-PV confer protection in a mouse bacteremia model. PLoS ONE. 2013; 8 (6): e65384.
  63. Kennedy A.D., Bubeck Wardenburg J., Gardner D.J., Long D., Whitney A.R., Braughton K.R., Schneewind O., DeLeo F.R. Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J. Infect. Dis. 2010; 202 (7): 1050–8.
  64. Foletti D., Strop P., Shaughnessy L., Hasa-Moreno A., Casas M.G., Russell M., Bee C., Wu S., Pham A., Zeng Z., Pons J., Rajpal A., Shelton D. Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus alpha-hemolysin. J. Mol. Biol. 2013 (10); 425: 1641–54.
  65. Laventie B.J., Rademaker H.J., Saleh M., de Boer E., Janssens R., Bourcier T., Subilia A., Marcellin L., van Haperen R., Lebbink J.H., Chen T., Prévost G., Grosveld F., Drabek D. Heavy chain-only antibodies and tetravalent bispecific antibody neutralizing Staphylococcus aureus leukotoxins. Proc. Natl. Acad. Sci. USA. 2011; 108 (39): 16404–9.