A.F. Poveshchenko (1,2), O.V. Poveshchenko (1,2), A.O. Solovieva (1), K.E. Zubareva (1,5), T.V. Miller (1), M.A. Shestopalov (1,3), L.A. Shundrin (1,4), V.I. Konenkov (1,2) 1 -Research Institute of Clinicaland Experimental Lymphology of the Siberian Branch of the Russian Academy of Sciences, Timakova str., 2, Novosibirsk, 630117, Russian Federation; 2 -Novosibirsk Research Instituteof Circulation Pathology named after Academician E.N. Meshalkin, Rechkunovskaya str., 15, Novosibirsk, 630055, Russian Federation; 3 -Institute of Inorganic Chemistry named after A.V. Nikolaev, Siberian Branch of the Russian Academy of Sciences, Lavrentieva avenue, 3, Novosibirsk, 630090, Russian Federation; 4 -Novosibirsk Institute of Organic Chemistry named after N.N. Vorozhtsov, of the Siberian Branch of the Russian Academy of Sciences, Lavrentieva avenue, 9, Novosibirsk, 630090, Russian Federation; 5 -Sceintific Research Center «Vector» the Novosibirskaya Region, Koltsovo settlement, 630559, Russian Federation

Review is devoted to systems for drug delivery of biologically active substances in the tissues and organs of the target cells, which is relevant to medicine. There are described properties of mesenchymal stromal cells (MSCs), which many authors propose to use as transport delivery systems of bioactive substances in the organs and tissues. This review describes the unique properties of MSCs, which is based on their use in regenerative medicine, methods of selection, methods of the use as transport systems and anti-tumor therapy. After transplantation, the transplanted cells marker was shown to be determined in all the studied organs, however, the number of cells in tumor tissue was significantly higher than in other examined organs. Thus, in a syngeneic model there was noteda significantly higher rate of migration of MSC into the tumor tissue, which may indicate to the tropism of MSCs to bone marrow cells of B16 melanoma. This property of MSC represents the possibility of their use as a unique tool for the selective delivery of anticancer products of genes into tumor cells in vivo. There are described studies of the system for targeted delivery of drugs, not only in certain tissues, but also directly to specific target cells on the base of peptide nanoparticles: PEP, MPG and CADY. The use of nanoparticles with a metal core and a polymeric shell, which contains the medicinal compound as containers makes it possible to control drug release. One of the purposes of the review is to draw attention of researchers to the study of properties of the conjugates of the octahedral cluster complexes of molybdenum and/ or rhenium with various biomolecules. The study of the properties of a new class of agents for x-ray and/or fluorescence diagnosis may result in the creation of new photosensitizers for photodynamic tumor therapy .
mesenchymal stromal cells, a delivery system based on the peptides

Список литературы: 
  1. Pal`cev M.A., Belushkina N.N. Translyacionnaya medicina – novyy e`tap razvitiya molekulyarnoy mediciny. Molekulyarnaya medicina. 2012; 4: 2–6.[Paltsev MA Belushkina NN Translational Medi-cine – new stage of development molekular medicine. Molecular Medicine. 2012; 4: 2–6 (in Russian)]
  2. Friedenstein A.J., Chailakhyan R.K., Latsinik N.V., Panasyuk A.F., Keiliss-Borok I.V. Stromal cells responsible for transferring the microenvi-ronment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplanta-tion. 1974; 17 (4): 331–40.
  3. Caplan A.I.. Mesenchymal stem cells. J. Orthop. Res. 1991; 9 (5): 641–50.
  4. Galotto M., Berisso G., Delfino L., Podesta M., Ottaggio L., Dallorso S., Dufour C., Ferrara G.B., Abbondandolo A., Dini G., Bacigalupo A., Cancedda R., Quarto R., Stromal damage as consequence of high-dose chemo/radio-therapy in bone marrow transplant recipients, Exp. Hematol. 1999; 27 (9): 1460–6.
  5. Caplan A.I., Bruder S.P. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med. 2001; 7 (6): 259–64.
  6. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R., Multilin-eage potential of adult human mesenchymal stem cells. Science. 1999; 284 (5411): 143–7.
  7. Poveshhenko O.V., Kolesnikov A.P., Kim I.I., Ul`yanov E.V., Mozzherina A.N., Yankayte E.V., Solov`eva T.V., Gerter A.O., Zonova E.V., Poveshhenko A.F., Konenkov V.I. Cposoby vydeleniya i usloviya kul`tivirovaniya mezenhimal`nyh stromal`nyh kletok zhirovoy tkani cheloveka, poluchennoy iz razlichnyh istochnikov. Byulleten` Sibirskogo otdeleniya Rossiyskoy akademii medicinskih nauk. 2008; 5: 90–5. [Poveschenko OV Kolesnikov, AP, Kim II, Ulyanov EV Mozzherina AN, Jankajite EV, Solovieva AO, Herter AO, Zonova EV Pov-eshchenko AF Konenkov VI Process for the isolation and culture conditions of mesen-chymal stromal cells of human adipose tissue obtained from various sources. Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences. 2008; 5: 90–5 (in Russian)]
  8. Poveshhenko O.V., Poveshhenko A.F., Konenkov V.I. E`ndotelial`nye progenitornye kletki i neovaskulogenez. Uspehi sovremennoy biologii. 2012; 132 (1): 69–76. [Poveschenko OV Poveschenko AF Konenkov VI Endothelial progenitor cells and neo-vaskulogenez. Advances in modern biology. 2012;132 (1): 69–76 (in Russian)]
  9. Simmons P.J., Torok-Storb B., Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991; 78 (1): 55–62.
  10. Colletti E.J., Airey J.A., Liu W., Simmons P.J., Zanjani E.D., Porada C.D., Almeida-Porada G., Generation of tissue-specific cells from MSC does not require fusion or donor-to-host mitochondrial/membrane transfer. Stem Cell Res. 2009; 2 (2): 125–38.
  11. Mitchell J.B., McIntosh K., Zvonic S., Garrett S., Floyd Z.E., Kloster A., Di Halvorsen Y., Storms R.W., Goh B., Kilroy G., Wu X., Gimble J.M., Im-munophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006; 24 (2): 376–85.
  12. Ozawa K., Sato K., Ozaki I. Oh, K., Uchibori R., Obara Y., Kikuchi Y., Ito T., Okada T., Urabe M., Mizukami H., Kume A., Cell and gene therapy using mesenchymal stem cells. J. Autoimmun. 2008; 30 (3): 121–7
  13. Gnecchi M., Melo L.G. Bone marrow-derived mesenchymal stem cells: isolation, expan-sion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol. 2009; 482: 281–94.
  14. Fan L., Lin C., Zhuo S., Chen L., Liu N., Luo Y., Fang J., Huang Z., Lin Y., Chen J., Transplanta-tion with survivin-engineered mesenchymal stem cells results in better prognosis in a rat model of myocardial infarction. Eur. J. Heart Fail. 2009; 11 (11): 1023–30.
  15. Lu Z., Hu X., Zhu C., Wang D., Zheng X., Liu Q., Overexpression of CNTF in Mesenchymal Stem Cells reduces demyelination and induces clinical recovery in experimental autoimmune encephalomyelitis mice. J. Neuroimmunol. 2009; 206 (1–2): 58–69.
  16. Aquino J.B., Bolontrade M.F., Garcia M.G., Podhajcer O.L., Mazzolini G., Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther. 2010; 17 (6): 692–708.
  17. Poveshhenko A.F., Poveshhenko O.V., Konenkov V.I. Sovremennye dostizheniya v sozdanii metodov izucheniya migracii stvolovyh kletok. Vestnik Rossiyskoy akademii medicinskih nauk. 2013; 9: 46–51.[Poveshchenko A.F., Poveschenko O.V., Ko-nenkov V.I. Recent advances in the creation of methods for studying the migration of stem cells. Bulletin of the Russian Academy of Medi-cal Sciences. 2013; 9: 46–51 (in Russian)]
  18. Solov`eva A.O., Zubareva K.E`., Poveshhenko A.F., Nechaeva E.A., Konenkov V.I.. Sposoby mecheniya kletok dlya vizualizacii in vivo. KTTI. 2013; VIII (4): 33–8.[Solovyov A.O., Zubarev K.E., Poveschenko A.F., Nechayev E.A. Konenkov V.I. Methods for visualization of cell labeling in vivo. KTTI. 2013; VIII (4): 33–8 (in Russian)]
  19. Studeny M., Marini F.C., Dembinski J.L., Zompetta C., Cabreira-Hansen M., Bekele B.N., Champlin R.E., Andreeff M., Mesenchymal stem cells: potential precursors for tumor stroma and tar-geted-delivery vehicles for anticancer agents. J. Natl Cancer Inst. 2004; 96 (21): 1593–603
  20. Loebinger M.R., Eddaoudi A., Davies D., Janes S.M., Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009; 69 (10): 4134–42.
  21. Deshayes S., Konate K., Aldrian G., Crombez L., Heitz F., Divita G., Structural polymorphism of non-covalent peptide-based delivery systems: Highway to cellular uptake Biochimica et Biophysica Acta. 2010; 1798: 2304–14.
  22. Zorko M., Langel U., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev. 2005; 57: 529–45.
  23. Beven L., Wroblewski H. Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes Res. Microbiol. 1997; 148: 163–75.
  24. Aleksandrova N.M., Bevova M.P., Govorun V.M. Citotoksicheskaya aktivnost` meliti-na, e`kspressiruemogo rekombinantnymi vektorami v kletkah Acholeplasma laidlawii i Mycoplasma hominis. Genetika. 2001: 37: 46–53.[Alexandrov N.M., Bevova M.P., Gabby V.M. Melitina cytotoxic activity expressed by the recombinant vectors in cells Acholeplasma laidlawii and Mycoplasma hominis. Genetics. 2001; 37: 46–53 (in Russian)]
  25. Fischer R., Fotin-Mleczek M., Hufnagel H., Brock R. Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. Chem. Biochem. 2005; 6: 2126–42.
  26. Jones A.T. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J. Cell. Mol. Med. 2007; 11: 670–84.
  27. Richard J.P., Melikov K., Brooks H., Prevot P., Lebleu B., Chernomordik L.V. Cellular uptake of unconjugated TAT peptide involves clathrin dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 2005; 280: 15300–6.
  28. Crombez L., Morris M.C., Deshayes S., Heitz F., Divita G. Peptide-based nanoparticle for ex vivo and in vivo drug delivery. Curr. Pharm. Des. 2008; 14: 3656–65.
  29. Morris M.C., Vidal P., Chaloin L., Heitz F., Divita G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 1997; 25: 2730–6
  30. Konate K., Crombez L., Deshayes S., Thomas A., Brasseur R., Aldrian-Herrada G., Heitz F., Divita G. Insight into the cellular uptake mechanism of a secondary amphipathic cell penetrating peptide for siRNA delivery. Biochemistry. 2010; 49: 3393–402.
  31. Efremova O.A., Shestopalov M.A., Chirtsova N.A., Smolentsev A.I., Mironov Y.V., Kitamura N., Brylev K.A., Sutherland A.J. A highly emissive inorganic hexamolybdenum cluster complex as a handy precursor for the preparation of new luminescent materials. Dalton Trans. 2014; 43: 6021–5.
  32. Kazantseva J., Palm K. Diversity in TAF Proteom-ics: Consequences for Cellular Differentiation and Migration Int. J. Mol. Sci. 2014; 15: 16680–97.