DOI: https://doi.org/None

A.G. Syrkasheva (1), A.M. Krasny (1), T.D. Mayorova (2), N.P. Makarova (1), N.V. Dolgushina (1) 1 -Research Center for Obstetrics, Gynecology and Perinatology, Oparina street, 4, Moscow, 117997, Russian Federation; 2 -Koltzov Institute of Developmental Biology, Vavilova street, 26, Moscow, 119071, Russian Federation

Introduction. In IVF-cycles ≈70% of human oocytes have different morphological abnormalities (dysmorphisms). Embryos from dysmorhic oocytes may have delay in development due to mitochondrial dysfunction and disorders of energy accumulation in the cell. The aim of the study was to compare the number of mitochondrial DNA (mtDNA) copies in human oocytes with different morphology. Materials and methods. We used real-time PCR to quantify the number of mtDNA copies in 343 unfertilized oocytes from 198 women. Group 1 consisted of oocytes with cytoplasmic dysmorphisms (n=126), group 2 – oocytes with extracytoplasmic dysmorphisms (n=108), and group 3 – oocytes with normal morphology (n=109). Results. The total distribution of mtDNA was in the range of 5’440–9’800’000 copies, Me=2’000’000 copies, Q25-Q75=813’000–3’300’000 copies. In the group 1 the median with interquartile range was 1’300’000 (263’500–2’325’000) copies, in group 2 – 2’500’000 (1’400’000–4’000’000) copies, in group 3 – 2’500’000 (1’400’000–4’000’000) copies (p
oocytes quality, oocytes dysmorphisms, mitochondria, mtDNA, in vitro fertilization (IVF)

Список литературы: 
  1. Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mito-chondrion. 2011; 11 (5): 797–813.
  2. Sutovsky P., Van Leyen K., McCauley T., Day B., Sutovsky M. Degradation of paternal mitochondria after fertilization: implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reprod Biomed Online. 2004; 8 (1): 24–33.
  3. St. John J., Facucho-Oliveira J., Jiang Y., Kelly R., Salah R. Mitochondrial DNA transmission, replication and inheritance: A journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update. 2010; 16 (5): 488–509.
  4. Morgan C., Jean M., Savagner F., Reynier P., Chre M., Barrie P. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001; 7 (5): 425–9.
  5. Ubaldi F., Rienzi L. Morphological selection of gametes. Placenta. 2008; 29 (Suppl B): 115–20.
  6. Ten J., Mendiola J., De Juan J., Bernabeu R. Donor oocyte dysmorphisms and their influ-ence on fertilization and embryo quality. Reprod Biomed Online. 2007; 14: 40–8.
  7. Rienzi L., Ubaldi F., Iacobelli M., Minasi M., Romano S., Ferrero S., Sapienza F., Baroni E., Litwicka K., Greco E. Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil Steril. 2008; 90 (5): 1692–700
  8. Wilding M., Matteo L., Andretti S., Montan-aro N., Capobianco C., Dale B. An oocyte score for use in assisted reproduction. J. Assist Reprod Genet. 2007; 350–8.
  9. Fancsovits P., Tóthné Z., Murber Á., Rigó J., Urbancsek J. Importance of cytoplasmic granularity of human oocytes in in vitro fer-tilization treatments. Acta Biol Hung. 2012; 63 (2): 189–201.
  10. Nottola S., Macchiarelli G., Coticchio G., Bianchi S., Cecconi S., Santis L., Scaravelli G., Flamigni C., Borini A. Ultrastructure of human mature oocytes after slow cooling cryopreservation using different sucrose concentrations. Hum Reprod. 2007; 22 (4): 1123–33.
  11. Ebner T., Moser M., Shebl O., Sommergruber M., Tews G. Prognosis of oocytes show-ing aggregation of smooth endoplasmic reticulum. Reprod Biomed Online. 2008; 16: 113–8.
  12. Otsuki J., Okada A., Morimoto K., Nagai Y., Kubo H. The relationship between preg-nancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum Reprod. 2004; 19 (7): 1591–7.
  13. Lasiene K., Vitkus A., Valanciute A., Lasys V. Morphological criteria of oocyte quality. Medicina (Kaunas). 2009; 45 (7): 509–15.
  14. Van Blerkom J., Davis P., Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro ferti-lization and embryo transfer. Hum Reprod. 1995; 10: 415–24.
  15. Kahraman S., Yakin K., Dönmez E., Samli H., Bahçe M., Cengiz G, Sertyel S., Samli N., Imirzalioglu N. Relationship between granu-lar cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum Reprod. 2000; 15 (11): 2390–3.
  16. Ebner T., Moser M., Sommergruber M. Occurrence and developmental conse-quences of vacuoles throughout preim-plantation development. Fertil Steril. 2005; 83 (6): 1635–40.
  17. Otsuki J., Nagai Y., Chiba K. Lipofuscin bodies in human oocytes as an indicator of oocyte quality. J. Assist Reprod Genet. 2007; 24 (7): 263–70.
  18. Ramalho-Santos J., Varum S., Amaral S., Mota P., Sousa A., Amaral A. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update. 2009; 15 (5): 553–72.
  19. Manfredi G., Thyagarajan D., Papadopou-lou L., Pallotti F., Schon E. The fate of human sperm-derived mtDNA in somatic cells. Am. J. Hum Genet. 1997; 61: 953–60.
  20. Agarwal A., Gupta S., Sharma R. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005; 3: 28.
  21. Steuerwald N., Barritt J., Adler R., Malter H., Schimmel T., Brenner C. Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote. 2000; 9: 209–15.
  22. Agarwal A., Said T., Bedaiwy M., Banerjee J., Alvarez J. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006; 86 (3): 503–12.