PEPTIDE SEQUENCES MIMICKING THE EXTRACELLULAR MATRIX AS A PROMISING OPTION FOR BIOFUNCTIONALIZATION OF CARDIOVASCULAR GRAFTS

DOI: https://doi.org/None

V.G. Matveeva, L.V. Antonova, O.L. Barbarash, L.S. Barbarash Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Blvd., 6, Kemerovo, 650002, Russian Federation

Early endothelialization of the inner surface of cardiovascular grafts is imperative for achieving successful functioning in the body. Biofunctionalization of synthetic materials allows to create biomimetic surfaces by incorporating bioactive molecules capable of promoting specific cell responses. This review focuses on problems and prospects in the synthesis of various types of peptide sequences, mimicking the structure and function of the extracellular matrix, for fast and directed attraction of endothelial cells to synthetic surfaces. Particular attention is paid to the methods of peptide immobilization onto polymer surfaces, allowing to keep their bioactive properties. Biofunctionalization of synthetic materials for early endothelialization in situ with the use of peptide sequences is a promising approach for the development of cardiovascular grafts.
Keywords: 
biofunctionalization of materials, peptide sequence, endothelialization, cardiovascular grafts

Список литературы: 
  1. Bordenave L., Menu P., Baquey C. Developments towards tissue-engineered, smalldiameter arterial substitutes. Exp. Rev. Med. Dev. 2008; 5 (3): 337–47.
  2. Starikova E`.A., Lebedeva A.M., Burova L.A., Freydlin I.S. Izmeneniya funkcional`noy aktivnosti e`ndotelial`nyh kletok pod vliyaniem lizata. Citologiya. 2012; 54 (1): 49–57. [Starikova E.A., Lebedeva A.M., Burova L.A., Freidlin I.S. Changes in functional activity of endothelial cells under the lysate influence. Cytology. 2012; 54 (1): 49–57 (in Russian)]
  3. Matveeva V.G., Golovkin A.S., Antonova L.V. i dr. Vliyanie produktov mehanicheskogo povrezhdeniya miokarda, LPS i ih sochetaniya na e`ndotelial`nye kletki iz pupochnoy veny cheloveka. Med. Immuno- logiya. 2014; 6 (4): 361–6. [Matveeva V.G., Golovkin A.S., Antonova L.V. et al. Influence ofmechanical damage myocardium products, LPS and there combinations on human umbilical vein endothelial cells. Med. Immunology. 2014; 6 (4): 361–6 (in Russian)]
  4. Yarilin, A. A. Immunologiya. M. GE`OTAR- Media, 2010. 752 s. [Yarilin A.A. Immunology. M. GEOTAR-Media, 2010. 752 (in Russian)]
  5. Hoenig M.R., Campbell G.R., Campbell J.H. Vascular grafts and the endothelium. Endot. 2006; 13: 385–401.
  6. McAllister T. N., Maruszewski M., Garrido S. A. et al. Effectiveness of haemodialysis access with an autologous tissueengineered vascular graft: a multicentre cohort study. The Lancet 2009; 373 (9673): 1440–6.
  7. Aoki J.; Serruys P. W.; van Beusekom H. et al. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J. Am. Coll. Cardiol. 2005; 45: 1574–9.
  8. Rashid S.T., Fuller B., Hamilton G., Seifalian A.M. Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J. 2008; 6: 2084–9.
  9. de Mel A., Punshon G., Ramesh B. et al. In situ endothelialization potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft. Bio-Med. Mater. Engin. 2009; 19 (4–5): 317–31.
  10. Kammerer P. W., Heller M., Brieger J. et al. Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation. Eur.Cells & Mater. 2011; 21: 364–72.
  11. Melero-Martin J.M., Khan Z.A., Picard A. et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007; 109 (11): 4761–8.
  12. Jevon M., Dorling A., Hornick P. I. Progenitor cells and vascular disease. Cell Prolif. 2008, 41: 146–64.
  13. Krenning G, Dankers P.Y, Jovanovic D. et al. Efficient differentiation of CD14+ monocytic cells into endothelial cells on degradable biomaterials. Biomat. 2007; 28: 1470–9.
  14. Fujiyama S., Amano K., Uehira K. et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ. Res. 2003; 93 (10): 980–9.
  15. Stevens M.M., George J.H. Exploring and Engineering the Cell Surface Interface. Sci. 2005; 310: 1135–8.
  16. Watt F.M.; Hogan B.L. Out of Eden: stem cells and their niches. Sci. 2000; 287: 1427–30.
  17. Kleinman H.K., Philp D., Hoffman M.P. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 2003; 14: 526–32.
  18. Rosso F., Giordano A., Barbarisi M., Barbarisi A. From cell-ECM interactions to tissue engineering. J. Cell. Physiol. 2004; 199: 174–80.
  19. Hynes R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992; 69: 11–25.
  20. Xiao Y., Truskey G.A. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys. J. 1996; 71: 2869–84.
  21. Humphries J.D., Byron A., Humphries M.J. Integrin ligands at a glance. J. Cell Sci. 2006; 119: 3901–3.
  22. Ruegg C., Dormond O., Mariotti A. Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochim. Biophys. Acta. 2004; 1654: 51–67.
  23. Urbich C., Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 2004; 95: 343–53.
  24. Chavakis E.; Aicher A.; Heeschen C.E. et al. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J. Exp. Med. 2005; 201: 63–72.
  25. Rodenberg E.J., Pavalko F.M. Peptides derived from fibronectin type III connecting segments promote endothelial cell adhesion but not platelet adhesion: implications in tissue-engineered vascular grafts. Tis. Eng. 2007; 13: 2653–66.
  26. Hubbell J.A., Massia S.P., Desai N.P., Drumheller P.D. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnol. (N.Y.) 1991; 9: 568–72.
  27. Ochsenhirt S.E., Kokkoli E., McCarthy J.B., Tirrell M. Effect of RGD secondary structure and the synergy site PHSRN on cell adhesion, spreading and specific integrin engagement. Biomat. 2006; 27: 3863–74.
  28. Pierschbacher M., Hayman E.G., Ruoslahti E. Synthetic peptide with cell attachment activity of fibronectin. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 1224–7.
  29. Tashiro K., Sephel G.C., Weeks B., et al. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem. 1989; 264: 16174–82.
  30. Weber L.M., Hayda K.N., Haskins K., Anseth K.S. The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomat. 2007; 28: 3004–11.
  31. Hsu S.H., Chu W.P., Lin Y.S. et al. The effect of an RGD-containing fusion protein CBDRGD in promoting cellular adhesion. J. Biotech. 2004; 111: 143–54.
  32. Reyes C.D., Garcia A.J. Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide. J. Biomed. Mater. Res. 2003; 65A: 511–23.
  33. Krijgsman B., Seifalian A.M., Salacinski H.J. et al. An assessment of covalent grafting of RGD peptides to the surface of a compliant poly(carbonate-urea)urethane vascular conduit versus conventional biological coatings: its role in enhancing cellular retention. Tis. Eng. 2002; 8: 673–80.
  34. Reyes C.D., Petrie T.A., Burns K.L. et al. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. J. Biomat. 2007; 28: 3228–35.
  35. Heilshorn S.C., DiZio K.A., Welsh E.R., Tirrell D.A. Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomat. 2003; 24: 4245–52.
  36. Heilshorn S.C., Liu J.C., Tirrell D.A. Cell-binding domain context affects cell behavior on engineered proteins. Biomacromol. 2005; 6: 318–23.
  37. Liu J.C., Heilshorn S.C., Tirrell D.A. Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromol 2004; 5: 497–504.
  38. Blindt R., Vogt F., Astafieva I., et al. A novel drug-eluting stent coated with an integrinbinding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J. Amer. College of Cardiol. 2006; 47 (9): 1786–95.
  39. Meinhart J.G., Schense J.C., Schima H. et al. Enhanced endothelial cell retention on shear-stressed synthetic vascular grafts precoated with RGD-cross-linked fibrin. J. Tissue Engin. 2005; 11 (5–6): 887–95.
  40. Gauvreau V., Laroche G. Micropattern printing of adhesion, spreading, and migration peptides on poly (tetrafluoroethylene) films to promote endothelialization. Bioconjugate Chem. 2005; 16: 1088–97.
  41. Jiang X., Chai C., Zhang Y. et al. Surfaceimmobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells. Biomat. 2006; 27: 2723–32.
  42. McMillan R., Meeks B., Bensebaa F. et al. Cell adhesion peptide modification of gold-coated polyurethanes for vascular endothelial cell adhesion. J Biomed. Mater. Res. 2001; 54: 272–83.
  43. Santiago L.Y., Nowak R.W., Rubin P.J., Marra K.G. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomat. 2006; 27 (15): 2962–9.
  44. Jun H.W.; West J.L. Modification of polyurethaneurea with PEG and YIGSR peptide to enhance endothelialization without platelet adhesion. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2005; 72B: 131–9.
  45. Taite L.J., Yang P., Jun H.W., West J.L. Nitric oxide-releasing polyurethane–PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J. Biomed. Mat. Res. 2008; Part B: Appl. Biomater. 84B (1): 108–16.
  46. Li C., Hill A., Imran M. In vitro and in vivo studies of ePTFE vascular grafts treated with P15 peptide. J. Biomater. Sci. Polym. Ed. 2005; 16 (7): 875–91.
  47. Plouffe B.D., Njoka D.N., Harris J. et al. Peptide-Mediated Selective Adhesion of Smooth Muscle and Endothelial Cells in Microfluidic Shear Flow. Langmuir. 2007; 23 (9): 5050–5.
  48. Veiseh M., Veiseh O., Martin M.C. et al. Short Peptides Enhance Single Cell Adhesion and Viability on Microarrays. Langmuir 2007; 23: 4472–9.
  49. Lin X., Takahashi K., Liu Y., Zamora P.O. Enhancement of cell attachment and tissue integration by a IKVAV containing multidomain peptide. Biochim. Biophys. Acta 2006; 1760: 1403–10.
  50. Kojima N., Matsuo T., Sakai Y. Effect of seeding using an avidin-biotin binding system on the attachment of periodontal ligament fibroblasts to nanohydroxyapatit scaffolds: three-dimensional culture. Biomater. 2006; 27: 4904–10.
  51. Bhat V.D., Truskey G.A., Reichert W.M. Using avidin-mediated binding to enhance initial endothelial cell attachment and spreading. J. Biomed. Mat. Res. 1998; 40: 57–65.
  52. Hasegawa T., Okada K., Takano Y. et al. Autologous fibrin-coated small-caliber vascular prostheses improve antithrombogenicity by reducing immunologic response. J. Thorac. CardioVasc. Surg. 2007; 133: 1268–76.
  53. Alobaid N., Salacinski H.J., Sales K.M. et al. Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: An in vitro evaluation. Eur. J. Vasc. Endovas. Surg. 2006; 32: 76–83.
  54. Kidane A.G., Punshon G., Salacinski H.J. et al. Incorporation of a lauric acid-conjugated GRGDS peptide directly into the matrix of a poly (carbonateurea) urethane polymer for use in cardiovascular bypass graft applications. J. Biomed. Mater. Res. 2006; A 79: 606–17.
  55. Salacinski H.J., Hamilton G., Seifalian A.M. Surface functionalization and grafting of heparin and/or RGD by an aqueousbased process to a poly (carbonate-urea) urethane cardiovascular graft for cellular engineering applications. J. Biomed. Mater. Res. 2003; A 66: 688–97.
  56. Tiwari A., Kidane A., Salacinski H. et al. Improving endothelial cell retention for single stage seeding of prosthetic grafts: use of polymer sequences of arginine-glycine-aspartate. Eur. J. Vasc. Endovasc. Surg. 2003; 25: 325–29.
  57. Chung T.W, Yang M.G, Liu D.Z et al. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (epsilon-caprolactone) (PCL) surface with nanometer scale of surface disturbance. J Biomed. Mater. Res. A. 2005; 72 (2): 213–9.
  58. Zheng W., Wang Z., Song L. et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomat. 2012; 33 (10): 2880–91.
  59. Gabriel M., van Nieuw Amerongen G.P., Van Hinsbergh V.W. et al. Direct grafting of RGD-motif-containing peptide on the surface of polycaprolactone films. J. Biomat. Sci. Ed. 2006; 17 (5): 567–77.
  60. Zheng W., Guan D., Teng Y. et al. Functionalization of PCL fibrous membrane with RGD peptide by a naturally occurring condensation reaction. Chin. Sci. Bull. 2014; 59 (22): 2776–84.
  61. Tang C., Kligman F., Larsen C.C. et al. Platelet and endothelial adhesion on fluorosurfactant polymers designed for vascular graft modification. J. Biomed. Mater. Res. 2009; A 88: 348–58.
  62. Conforti G., Zanetti A., Colella S., G. et al. Interaction of fibronectin with cultured human endothelial cells: characterization of the specific receptor. Blood 1989; 73: 1576–85.
  63. Larsen C.C., Kligman F., Tang C. et al. A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion. Biomaterials. 2007; 28 (24): 3537–48.
  64. Mould A.P., Koper E.J., Byron A. et al. Mapping the ligand-binding pocket of integrin alpha5beta1 using a gain-of-function approach. Biochem. J. 2009; 424 (2): 179–89.
  65. Koivunen E., Wang B., Ruoslahti E. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J. Cell. Biol. 1994; 124 (3): 373–80.
  66. Meyers S.R., Kenan D.J., Khoo X., Grinstaff M.W. A bioactive stent surface coating that promotes endothelialization while preventing platelet adhesion. Biomacromolecules. 2011; 12 (3): 533–9.
  67. Patel S., Tsang J., Harbers G.M. et al. Regulation of endothelial cell function by GRGDSP peptide grafted on interpenetrating polymers. J. Biomed. Mater. Res. A 2007; 83 (2): 423–33.
  68. Koivunen E., Wang B.C., Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Bio-Technol. 1995; 13: 265–70.
  69. Pierschbacher M.D., Ruoslahti E. Influence of stereochemistry of the sequence Arg- Gly-Asp-Xaa on binding specificity in cell adhesion. J. Biol. Chem. 1987; 262: 17294–8.
  70. Cheng S., Craig W.S., Mullen D. et al. Design and synthesis of novel cyclic RGD-containing peptides as highly potent and selective integrin alpha IIb beta 3 antagonists. J. Med. Chem. 1994; 37: 1–8.
  71. Wilson C.J., Clegg R.E., Leavesley D.I., Pearcy M. Mediation of biomaterial–cell interactions by adsorbed proteins: A Review. J. Tis. Eng. 2005; 11: 1–18.
  72. Coyle C.H., Mendralla S., Lanasa S., Kader K.N. Endothelial cell seeding onto various biomaterials causes superoxide-induced cell death. J. Biomater. Appl. 2007; 1: 55–69.
  73. Hirano Y., Mooney D.J. Peptide and protein presenting materials for tissue engineering. Adv. Mater. 2004; 16: 17–25.
  74. Brewster L.P., Bufallino D., Ucuzian A., Greisler H.P. Growing A Living Blood Vessel: insights for the second hundred years. Biomat. 2007; 28: 5028–32.
  75. Collier J.H., Segura T. Evolving the use of peptides as biomaterials components. Biomat. 2011; 32: 4198–204.
  76. Dankers P.Y., Harmsen M.C., Brouwer L.A. et al. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 2005; 4: 568–74.
  77. Kilian K.A., Mrksich M. Directing stem cell fate by controlling the affinity and density of ligand-receptor interactions at the biomaterials interface. Angew. Chem., Int. Ed. 2012; 51: 4891–5.
  78. Zorlutuna P., Annabi N., Camci-Unal G. et al. Microfabricated biomaterials for engineering 3D tissues. Adv. Mater. 2012; 24: 1782–804.
  79. Espeel P., Goethals F., Driessen F. et al. One-pot, additive-free preparation of functionalized polyurethanes via amine thiol–ene conjugation. Polym. Chem. 2013; 4: 2449–56.
  80. Tan M., Feng Y., Wang H. et al. Immobilized bioactive agents onto polyurethane surface with heparin and phosphorylcholine group. Macromol. Res. 2013; 21: 541–9.
  81. de Mel A., Ramesh B., Scurr D.J. et al. Fumed silica nanoparticle mediated biomimicry for optimal cell–material interactions for artificial organ development. Macromol. Biosci. 2014; 14 (3): 307–13.