PROTEOMIC PROFILING OF ESCHERICHIA COLI, ISOLATED FROM CROHN’S DISEASE PATIENTS

DOI: https://doi.org/10.29296/24999490-2018-01-04

D.S. Matyushkina (1), O.V. Pobeguts (1), O.N. Bukato (1), D.V. Rakitina (1), Yu.P. Baikova (1), V.G. Ladygina (1), D.N. Andreev (2), I.V. Maev (2), P.L. Scherbakov (3), V.M. Govorun (1) 1-Federal Research and Clinical Centre of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, Russian Federation; 2-A.I. Evdokimov Moscow State University of Medicine and Dentistry, Delegatskayastr, 20, bld. 1, Moscow, Russian Federation, 127473; 3-Central Scientific Institute of Gastroenterology, Shosse Entuziastov, 86, Moscow, Russian Federation, 111123 E-mail: [email protected]

Introduction. A possible pathogenesis for Crohn’s disease (CD) involves the provocation of uncontrollable immune response by intestinal microbiota. Escherichia coli is regarded as a candidate for possible pathogen, since its content is increased in intestine of CD patients. It is unclear, however, if CD-associated E. coli is pathogenic or commensal beneficiary of the processThe aim of the study is to reveal differences between clinical E. coli isolates from CD patients and healthy individuals. For that purpose, there were compared proteome profiles of these isolates after cultivation at laboratory conditions. Methods. Differential 2D-electrophoresis with protein identification by peptide-mass-fingerprint MALDI-mass-spectrometry. Results and discussion. In cells of CD-isolated E. coli the content of 5 proteins was increased compared to isolates from healthy individuals: as tryptophanase (tnaA), glutamate decarboxylase (gadB), malate dehydrogenase (mdh) и chemoreceptors of ribose (rbsB) and galactose (mglB) Tryptophanase produces indole, a signal molecule. In microbiota it induces resistance to antibiotics, phagocytosis, biofilm formation, virulence and toxin production. On the other hand, in human intestine it enhances the epithelial barrier function and modulates the expression of proinflammatory genes. The gain in the content of chemotaxis receptors of ribose and galactose reflects the preference of these sugars by pathogenic E. coli during gut colonization. Glutamate decarboxylase provides the resistance to acid for bacteria during passage through the stomach, increasing the effectiveness of peroral infection. Expression of mdh and rbsB genes is elevated in pathogenic E. coli during biofilm formation. Outer membrane protein porin A from CD-isolated and from healthy individuals E. coli had different isoelectric point (pI). This protein is suggested to play a role in pathogenesis, adhesion and invasion, survival within macrophages and evading host immune response. Conclusion Revealed features for CD-isolated E. coli are characteristic for pathogenic strains, suggesting their active role in CD pathogenesis.
Keywords: 
Crohn’s disease, Escherichia coli, tryptophanase, pathogen

Список литературы: 
  1. Sartor R.B. Mechanisms of Disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nature Clinical Practice Gastroenterology & Hepatology. 2006; 3: 390–407.
  2. Maev I.V., Andreev D.N. Molekulyarno-geneticheskie mehanizmy razvitiya bolezni Krona. Molekulyarnaya medicina. 2014; 3: 21–7.
  3. [Maev I.V., Andreev D.N. Molecular genetic mechanisms of the development of the Crohn's disease. Mol Med. 2014; 3: 21–7 (in Russian)]
  4. Maev I.V., Andreev D.N. Role of mutations in NOD2/CARD15, ATG16L1, and IRGM in the pathogenesis of Crohn's disease. Intern. J. Biomed. 2014; 4 (1): 7–10.
  5. Maev I.V., Andreev D.N., Rakitina D.V., Baykova Yu.P. Rol` defektov autofagii i znachenie adgezivno-invazivnyh Escherichia coli v geneze bolezni Krona. RZhGGK. 2015; 3: 61–9.
  6. [Maev I.V., Andreev D.N., Rakitina D.V., Baikova J.P. Role of autophagy defects and significance of adherent-invasive Escherichia coli in Crohn's disease development. RZHGGK. 2015; 3: 61–9 (in Russian)]
  7. Gevers D., Kugathasan S., Denson L.A., Vázquez-Baeza Y., Van Treuren W., Ren B., Schwager E., Knights D., Song S.J., Yassour M., Morgan X.C., Kostic A.D., Luo C., González A., McDonald D., Haberman Y., Walters T., Baker S., Rosh J., Stephens M., Heyman M., Markowitz J., Baldassano R., Griffiths A., Sylvester F., Mack D., Kim S., Crandall W., Hyams J., Huttenhower C., Knight R., Xavier R.J. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014; 15 (3): 382–92.
  8. Fisunov G.Y., Alexeev D.G., Bazaleev N.A., Ladygina V.G., Galyamina M.A., Kondratov I.G., Zhukova N.A., Serebryakova M.V., Demina I.A., Govorun V.M. Core proteome of the minimal cell: comparative proteomics of three mollicute species. PLoS One. 2011; 6 (7): e21964.
  9. Lee J.H., Lee J. Indole as an intercellular signal in microbial communities Microbiology Reviews FEMS. 2010; 34 (4): 426–44.
  10. Bommarius B., Anyanful A., Izrayelit Y., Bhatt S., Cartwright E., Wang W., Swimm A.I., Benian G.M., Schroeder F.C., Kalman D. A Family of Indoles Regulate Virulence and Shiga Toxin Production in Pathogenic E. coli. PLoS ONE. 2013; 8 (1): e54456.
  11. Bansal T., Alaniz R.C., Wood T.K. & Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA. 2010; 107: 228–33.
  12. Castanie–Cornet M.P., Penfound T.A., Smith D., Elliott J.F., Foster J.W. Control of acid resistance in Escherichia coli. J. Bacteriol. 1999; 181: 3525–35.
  13. Price S.B., Wright J.C., DeGraves F.J., Castanie–Cornet M.P., Foster J.W. Acid resistance systems required for survival of Escherichia coli O157:H7 in the bovine gastrointestinal tract and in apple cider are different. Appl. Environ Microbiol. 2004; 70: 4792–4799.
  14. De Biase D., Tramonti A., Bossa F., Visca P. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol. Microbiol. 1999; 32: 1198–211.
  15. Binnie R.A., Zhang H., Mowbrdy S., Hermodson M.A. Functional mapping of the surface of Escherichia coli ribose-binding protein: Mutations that affect chemotaxis and transport. Protein Sci. 1992; 1: 1642–51.
  16. Hazelbauer G.L., Adler J. Role of the galactose-binding protein in chemotaxis of Escherichia coli toward galactose. Nature New Biol. 1971; 230: 101–4.
  17. Fabich A.J., Shari A.J., Chowdhury F.Z., Cernosek A., Anderson A, Smalley D., McHargue J.W., Hightower G.A., Smith J.T., Autieri S.M., Leatham M.P., Lins J.J., Allen R.L., Laux D.C., Cohen P.S., Tyrrell Conway T. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 2008; 76: 1143–52.
  18. Maltby R., Leatham-Jensen M.P., Gibson T., Cohen P.S., Conway T. Nutritional Basis for Colonization Resistance by Human Commensal Escherichia coli Strains HS and Nissle 1917 against E. coli O157:H7 in the Mouse Intestine. PLOS One. 2013; 8 (1): e53957.
  19. Beloin C., Valle J., Latour-Lambert P., Faure P., Kzreminski M., Balestrino D., Haagensen J.A., Molin S., Prensier G., Arbeille B., Ghigo J.M. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. Microbiol. 2004; 51: 659–74.
  20. Sutherland P. and McAlister-Henn L. Isolation and Expression of the Escherichia coli Gene Encoding Malate Dehydrogenase J. of Bacteriology. 1985; 163 (3): 1074–9.
  21. Park S.J., Cotter P.A., Gunsalus R.P. Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J. Bacteriol. 1995; 177 (22): 6652–6.
  22. Han X., Tong Y., Tian M., Sun X., Wang S., Ding C., Yu S. Characterization of the immunogenicity and pathogenicity of malate dehydrogenase in Brucella abortus. World J. Microbiol. Biotechnol. 2014; 30 (7): 2063–70.
  23. Findlay H.E., McClafferty H., Ashley R.H. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis major outer membrane protein. BMC Microbiol. 2005; 5: 5.
  24. Confer A.W., Ayalew S. The OmpA family of proteins: Roles in bacterial pathogenesis and immunity. Veterinary Microbiology. 2013; 163 (3–4): 207–22.
  25. Rolhion N., Carvalho F.A., Darfeuille-Michaud A. OmpC and the sigma(E) regulatory pathway are involved in adhesion and invasion of the Crohn's disease-associated Escherichia coli strain LF82. Mol Microbiol. 2007; 63 (6): 1684–700.