ANGIOTROPIC EFFECTS OF DIPEPTIDE MIMETICS OF THE NERVE GROWTH FACTOR LOOP 4

DOI: https://doi.org/10.29296/24999490-2018-02-07

S.A. Kryzhanovskii, T.A. Antipova, I.B. Tsorin, E.S. Pekeldina, S.V. Nikolaev, A.V. Sorokina, I.A. Miroshkina, T.A. Gudasheva, S.B. Seredenin Research Zakusov Institute of Pharmacology, Baltiyskaya str., 8, Moscow, 125315, Russian Federation E-mail: [email protected]

Aim. The study of the angiotropic activity of dipeptide mimetics of the nerve growth factor (NGF) loop 4 possessing properties of TrkA receptor agonists and antagonists. Methods. Experiments in vitro. Angiotropic effects of dipeptide mimetics of the NGF loop 4 were studied in experiments performed in the culture of human endothelial cells (HUVEC). Experiments in vivo. Angiotropic effects of dipeptide mimetics of the NGF loop 4 were evaluated on a rat model of hindlimb ischemia that was reproduced by simultaneous resection of the femoral artery plot.In vivo experiments the compound GK-2 (1 mg/kg/day i/p during 14 days, n=17), a statistically significant (p=0,003), compared to the control animals (n=18) was demonstrated to increase the total length of the capillary bed in ischemic limbs – 19531 (16085–24511) and 14456 (10901–17404) µm/mm2 respectively, while compound GK-1 (1 mg/kg/day i/p within 14 days, n=18), compared to the controls (n=23), statistically significant (p
Keywords: 
dipeptide mimetics of the nerve growth factor loop 4, nerve growth factor, agonists and antagonists of TrkA receptors, angiogenesis

Список литературы: 
  1. Mnihovich M.V., Gershzon D., Brikman M., Davidzon Ya., Gavrilyuk A.A., Fomina L.V., Guminskiy Yu.I., Vernigorodskiy S.V., Miglyas V.G. Morfogeneticheskie mehanizmy kletochnyh vzaimodeystviy v processe angiogeneza (lekciya). Zhurnal anatomii i gistopatologii. 2012; 4 (3): 53–65. [Mnikhovich M.V., Gershzon D., Brikman M., Davidzon Ia., Gavriliuk A.A., Fomina L.V., Guminskii Iu. I., Vernigorodskii S.V., Miglias V.G. Morphogenetic mechanisms of cellular interactions in the process of angiogenesis (lecture). Zhurnal anatomii i histopatologii. 2012; 4 (3): 53–65 (in Russian)]
  2. Mangiafico R.A., Mangiafico M. Medical treatment of critical limb ischemia: current state and future directions. Curr. Vasc. Pharmacol. 2011; 9 (6): 658–76.
  3. Shimamura M, Nakagami H, Koriyama H, Morishita R. Gene therapy and cell-based therapies for therapeutic angiogenesis in peripheral artery disease. Biomed. Res. Int. 2013; 2013: 186215. DOI: 10.1155/2013/186215.
  4. Parfenova E.V., Tkachuk V.A. Terapevticheskiy angtogenez: dostizheniya, problemy, perspektivy. Kardiologicheskiy vestnik. 2007; XIV (2): 5–15. [Parfenova E.V., Tkachuk V.A. Therapeutic angiogenesis: achievements, problems, prospects. Kardiologicheskii vestnik. 2007; XIV (2): 5–15 (in Russian)]
  5. Ko S.H., Bandyk D.F. Therapeutic angiogenesis for critical limb ischemia. Semin. Vasc. Surg. 2014; 27 (1): 23–31.
  6. Ranieri G., Gasparini G. Angiogenesis and angiogenesis inhibitors: a new potential anticancer therapeutic strategy. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2001; 1 (3): 241–53.
  7. Jekunen A., Kairemo K. Inhibition of angiogenesis at endothelial cell level. Microsc. Res. Tech. 2003; 60 (1): 85–97.
  8. Song H., Fares M., Maguire K.R., Sidén A., Potácová Z. Cytotoxic effects of tetracycline analogues (doxycycline, minocycline and COL-3) in acute myeloid leukemia HL-60 cells. PLos One. 2014; 9 (12): e114457.
  9. Ge Y., Ding Y., Zhang J., Li Z., Li Z. Effect of angiogenesis inhibitor SU6668 in combination with 5-Fu on liver metastasis from transplantation tumors of human colorectal cancer in nude mice. Int. J. Clin. Exp. Med. 2014; 7 (10): 3578–82.
  10. Zhao Y., Adjei A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist. 2015; 206 (6): 660–73.
  11. Blais M., Lévesque P., Bellenfant S., Berthod F. Nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and glial-derived neurotrophic factor enhance angiogenesis in a tissue-engineered in vitro model. Tissue Eng. Part A. 2013; 19 (15–16): 1655–64.
  12. Kryzhanovskiy S.A., Vititnova M.B. Serdechno-sosudistye e`ffekty faktora rosta nervov (analiticheskiy obzor literatury). Chast` II. Fiziologiya cheloveka. 2011; 37 (3): 109–28. [Kryzhanovskii S.A., Vititnova M.B. Cardiovascular effects of nerve growth factor. Analytical review. Part 2. Fiziol. Cheloveka. 2011; 37 (3): 109–28 (in Russian)]
  13. Park H.J., Kim M.N., Kim J.G., Bae Y.H., Bae M.K., Wee H.J., Kim T.W., Kim B.S., Kim J.B., Bae S.K., Yoon S. Up-regulation of VEGF expression by NGF that enhances reparative angiogenesis during thymic regeneration in adult rat. Biochim Biophys Acta. 2007; 1773 (9): 1462–72.
  14. Kim Y.S., Jo D.H., Lee H., Kim J.H., Kim K.W., Kim J.H. Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development. Biochem. Biophys. Res. Commun. 2013; 431 (4): 740–5.
  15. Diao Y.P., Cui F.K., Yan S., Chen Z.G., Lian L.S., Guo L.L., Li Y.J. Nerve Growth Factor Promotes Angiogenesis and Skeletal Muscle Fiber Remodeling in a Murine Model of Hindlimb Ischemia. Chin. Med. J. (Engl). 2016; 129 (3): 313–9.
  16. Gudasheva T.A., Antipova T.A., Seredenin S.B. Novye nizkomolekulyarnye mimetiki faktora rosta nervov. Dokl. akad. nauk. 2010; 434 (4): 549–52. [Gudasheva T.A., Antipova T.A., Seredenin S.B. Novel low-molecular-weight mimetics of the nerve growth factor. Dokl. Akad. Nauk. 2010; 434 (4): 549–52 (in Russian)]
  17. Gudasheva T.A., Povarnina P.Yu., Antipova T.A., Seredenin S.B. A novel dimeric dipeptide mimetic of the nerve growth factor exhibits pharmacological effects upon systemic administration and has no side effects accompanying the neurotrophin treatment. Neuroscience and Medicine. 2014; 5: 101–8.
  18. Gudasheva T.A., Antipova T.A., Konstantinopol`skiy M.A., Povarnina P.Yu.,Seredenin S.B. Original`nyy dipeptidnyy mimetik faktora rosta nervov GK-2 izbiratel`no aktiviruet postreceptornye puti TrkA, ne vyzyvaya pobochnyh deystviy polnorazmernogo neyrotrofina. Doklady Akademii nauk. 2014; 456 (2): 231–5. [Gudasheva T.A., Antipova T.A., Konstantinopolsky M.A., Povarnina P.Y., Seredenin S.B. Nerve growth factor novel dipeptide mimetic GK-2 selectively activates TrkA postreceptor signaling pathways and does not cause adverse effects of native neurotrophin. Dokl. Akad. Nauk . 2014; 456 (2): 231–5 (in Russian)]
  19. Seredenin S.B., Gudasheva T.A. Dipeptidnye mimetiki neyrotrofinov NGF i BDNF. Patent RF №2410392. 2011. [Seredenin S.B., Gudasheva T.A. Dipeptidic mimetics of neurotrophins NGF and BDNF. Patent of the Russian Federation №2410392. 2011 (in Russian)]
  20. Freedman S.B., Isner J.M. Therapeutic angiogenesis for coronary artery disease. Ann. Intern. Med. 2002; 136 (1): 54–71.
  21. Lei Y., Haider H.Kh., Shujia J., Sim E.S. Therapeutic angiogenesis. Devising new strategies based on past experiences. Basic Res. Cardiol. 2004; 99 (2): 121–32.
  22. Lederman R.J., Mendelsohn F.O., Anderson R.D., Saucedo J.F., Tenaglia A.N., Hermiller J.B., Hillegass W.B., Rocha-Singh K., Moon T.E., Whitehouse M.J., Annex B.H.; TRAFFIC Investigators. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet. 2002; 539 (9323): 2053–8.
  23. Simons M., Annex B.H., Laham R.J., Kleiman N., Henry T., Dauerman H., Udelson J.E., Gervino E.V., Pike M., Whitehouse M.J., Moon T., Chronos N.A. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation. 2002; 105 (7): 788–93.
  24. Henry T.D., Annex B.H., McKendall G.R., Azrin M.A., Lopez J.J., Giordano F.J., Shah P.K., Willerson J.T., Benza R.L., Berman D.S., Gibson C.M., Bajamonde .A, Rundle A.C., Fine J., McCluskey E.R.; VIVA Investigators. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation. 2003; 107 (10): 1359–65.
  25. Schächinger V., Erbs S., Elsässer A., Haberbosch W., Hambrecht R., Hölschermann H., Yu. J., Corti R., Mathey D.G., Hamm C.W., Süselbeck T., Werner N., Haase J., Neuzner J., Germing A., Mark B., Assmus B., Tonn T., Dimmeler S., Zeiher A.M.; REPAIR-AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J. 2006; 27 (23): 2775–83.
  26. Mitsos S., Katsanov K., Koletsis E., Kagadis G.C., Anastasiou N., Diamantopoulos A., Karnabatidis D., Dougenis D. Therapeutic angiogenesis for myocardial ischemia revisited: basic biological concepts and focus on latest clinical trials. Angiogenesis. 2012; 15 (1): 1–22.
  27. Su H.,Takagawa J., Huang Y., Arakawa-Hoyt J., Pons J., Grossman W., Kan Y.W. Additive effect of AAV-mediated angiopoietin-1 and VEGF expression on the therapy of infarcted heart. Int. J. Cardiol. 2009; 133: 191–7.
  28. Kapatt C., Hinkel R.,Pfosser A., El-Aouni C., Wuchrer A., Fritz A., Globisch F., Thormann M., Horstkotte J., Lebherz C., Thein E., Banfi A., Boekstegers P. Cotransfection of vascular endothelial growth factor-A and platelet-derived growth factor-B via recombinant adeno-associated virus resolves chronic ischemic malperfusion role of vessel maturation. J. Am. Coll. Cardiol. 2010; 56: 414–22.
  29. Spanholtz T.A., Theodorou P., Holzbach T., Wutzler S., Giunta R.E., Machens H.G. Vascular endothelial growth factor (VEGF165) plus basic fibroblast growth factor (bFGF) producing cells induce a mature and stable vascular network – a future therapy for ischemically challenged tissue. J. Surg. Res. 2011; 171: 329–38.
  30. Tkachuk V.A., Plekhanova O.S., Parfyonova Y.V. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can. J. Physiol. Pharmacol. 2009; 87: 231–51.
  31. Makarevich P., Tsokolaeva Z., Shevelev A., Rybalkin I., Shevchenko E., Beloglazova I., Vlasik T., Tkachuk V., Parfyonova Y. Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle. PLoS One. 2012; 7: e38776.
  32. Maracle C.X., Tas S.W. Inhibitors of angiogenesis: ready for prime time? Best Pract. Res. Clin. Rheumatol. 2014; 28 (4): 637–49.
  33. Aprile G., Ongaro E., Del Re M., Lutrino S.E., Bonotto M., Ferrari L., Rihawi K., Cardellino G.G., Pella N., Danesi R., Fasola G. Angiogenic inhibitors in gastric cancers and gastroesophageal junction carcinomas: A critical insight. Crit. Rev. Oncol. Hematol. 2015; 95 (2): 165–78.