«RISKY» COMBINATIONS OF CANDIDATE GENES FOR HYPERPLASTIC PROCESSES OF THE ENDOMETRIUM

DOI: https://doi.org/10.29296/24999490-2018-02-09

I.V. Ponomarenko(1), K.I. Prashchayeu(2, 3), G.G. Shaginyan(2), M.I. Churnosov(1), A.N. Ilnitski(2, 3), E.V. Khrokhmaliova(2) 1-Belgorod National Research University, Pobedy str., 85, Belgorod, 308015, Russian Federation; 2-Research medical center «Gerontology», Aeroportovskaya str., bld. 4, Moscow, 125319, Russian Federation; 3-The Postgraduate Institute of Federal Medico-Biological Agency, Volokolamskoe av., 91, Moscow, Russian Federation, 125371 E-mail: [email protected]

Introduction. Endometrial hyperplasia represents a chronic progressive disease characterized by high prevalence among women in older age groups. The aim of the study. To study the involvement of combinations of candidate genes in the formation of hyperplastic processes of the endometrium. Methods. The sample for the study was 1501 person: 520 patients with endometrial hyperplasia and 981 female control group. Molecular genetic analysis of 4 loci was performed by polymerase chain reaction of DNA synthesis using standard oligonucleotide primers and probes. Analysis of the role of combinations of candidate genes in the occurrence of hyperplastic processes of the endometrium was performed using software APSampler using Monte Carlo Markov chains and Bayesian nonparametric statistics. Results. It was found that among women in the Central region of Russia risk factors for the development of endometrial hyperplastic processes are combinations of molecular genetic markers rs1398217 G, G rs887912, G rs2090409 (OR=1,32) and G rs1398217 c T rs10441737 and G rs2090409 (OR=1,30). Conclusion. The results indicate a significant role of the studied candidate genes in the development of hyperplastic processes of the endometrium.
Keywords: 
endometrial hyperplasia, genetic polymorphism

Список литературы: 
  1. Daya D. Endometrial hyperplasia and carcinoma with superimposed secretory changes: a double whammy. J. Gynecological Pathology. 2014; 33 (2): 105–6.
  2. Chandra V., Kim J.J., Benbrook D.M., Dwivedi A., Rai R. Therapeutic options for management of endometrial hyperplasia. J. Gynecol. Oncol. 2016; 27 (1): e8.
  3. Boyraz G., Başaran D., Salman M.C., Özgül N., Yüce K. Does Preoperative Diagnosis of Endometrial Hyperplasia Necessitate Intraoperative Frozen Section Consultation? J. Balkan Med. 2016; 33 (6): 657–61.
  4. Kadirogullari P., Atalay C.R., Ozdemir O., Erkan M. Sari Prevalence of Co-existing Endometrial Carcinoma in Patients with Preoperative Diagnosis of Endometrial Hyperplasia. J. Clin. Diagn. Res. 2015; 9 (10): 10–4.
  5. Orbo A., Arnes M., Vereide A.B., Straume B. Relapse risk of endometrial hyperplasia after treatment with the levonorgestrel impregnated intrauterine system or oral progestogens. BJOG. 2016; 123 (9): 1512–9.
  6. Pachomov C.P., Altuchova O.B., Demakova N.A., Krivoshei I.V., Kolesnikov Y.V., Sobyanin F.I. Study of Cytokines Polymorphous Loci Connections with Rise of Endometrium Proliferative Diseases. Research J. of Pharmaceutical, Biological and Chemical. 2014; 5 (6): 1473–6.
  7. Ponomarenko I.V., Altuchova O.B., Kulikovskiy V.F., Orlova V.S., Pachomov S.P., Churnosov M.I., Batlutskaya I.V., Bushueva O.Yu. Genetic Factors of Uterine Hyperplastic Diseases. Research J. of Pharmaceutical, Biological and Chemical Sciences. 2016; 7 (6): 3257–61.
  8. O’Hara A.J. The genomics and genetics of endometrial cancer. Adv. Genomics. Genet. 2012; 2: 33–47.
  9. Favorov A.V., Andreewski T.V., Sudomoina M.A., Favorova O.O., Parmigiani G., Ochs M.F. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics.2005; 171 (4): 2113–21.
  10. Ardlie K.G., Dermitzakis E.T. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015; 348 (6235): 648–60.
  11. Westra H.J., Peters M.J., Esko T. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013; 45 (10): 1238–43.
  12. Gibbs J.R., Van der Brug M.P., Hernandez D.G. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 2010; 6 (5): e1000952.
  13. Elks C.E., Perry J.R.B., Sulem P., Chasman D.I., Franceschini N., He C., Lunetta K.L., Visser J.A., Byrne E.M. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet. 2010; 42 (12): 1077–85.
  14. Speliotes E.K., Willer C.J., Berndt S.I., Monda K.L., Thorleifsson G., Jackson A.U., Allen H.L., Lindgren C.M. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010; 42 (11): 937–48.
  15. Berndt S.I.., Gustafsson S., Mägi R., Ganna A., Wheeler E., Feitosa M.F., Justice A.E., Monda K.L Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013; 45 (5): 501–12.
  16. Fehrmann R.S., Jansen R.C., Veldink J.H. Trans-e QTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 2011; 7 (8): e1002197.
  17. Perry J.R.B. Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014; 514 (7520): 92–7.
  18. Cousminer D.L., Stergiakouli E., Berry D.J., Ang W., Groen-Blokhuis M.M., Körner A., Siitonen N. Genome-wide association study of sexual maturation in males and females highlights a role for body mass and menarche loci in male puberty. Human Molecular Genetics. 2014; 23 (16): 4452–64.
  19. Demerath E.W., Liu C.-T., Franceschini N., Chen G., Palmer J.R., Smith E.N., Chen C.T.L. Genome-wide association study of age at menarche in African-American women. Human Molecular Genetics. 2013; 22 (16): 3329–46.