THE POSSIBILITY OF THE ANGIOGENESIS IN TISSUES REMOTE FROM THE PLACE OF THE MULTIPOTENT MESENCHYMAL STROMAL CELL INJECTION

DOI: https://doi.org/10.29296/24999490-2018-03-04

I.V. Maiborodin(1), R.V. Maslov(1), T.V. Mikheeva(1), A.A. Elovskiy(3), N.F. Figurenko(1), V.I. Maiborodina(2), A.I. Shevela(1), V.V. Anishchenko(3) 1-The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Akademika Lavrenteva str., 8, Novosibirsk, 630090, Russian Federation; 2-Institute of Molecular Pathology and Pathomorphology, Akademika Timakova, 2, Novosibirsk, 630117, Russian Federation; 3-JSC Medical Center «Avicenna», Uritskogo str., 2, Novosibirsk, 630007, Russian Federation E-mail: [email protected]

Introduction. The use of cell technologies has particular effectiveness in the correction of the experimental venous thrombosis and acute local obstruction to the blood outflow. Autologic multipotent mesenchymal stromal cells of a bone marrow origin (AMMSCBMO) participate in a recanalization of the blood clot and formation of new vessels that leads to the faster restitution of a blood flow in the tissue microenvironment of the affected vein. The aim of the study. To study a possibility of an angiogenesis in rat tissues remote from the place of AMMSCBMO injection, as a result of the migration of injected cells through vessels. Methods. A condition of the fatty tissue around the inguinal lymph nodes after injection of AMMSCBMO with a transfected GFP-gene through the skin into a projection of the ligated rat femoral vein was studied by the method of a fluorescent light microscopy.Results. 1–2 weeks after the introduction of AMMSCBMO shallow vessels of the capillary type with a bright luminescence of cells in the wall were found in a paranodal fatty tissue. Conclusion. After the injection of AMMSCBMO in tissues, these cells can partially get intoblood and lymphatic vessels. As a result, the angiogenesis with AMMSCBMO participation is possible, at least, in a fatty tissue around the regional lymph nodes that is remote from the place of the injection of AMMSCBMO, and, it is not excluded, in other organs and tissues of the organism.
Keywords: 
multipotent mesenchymalstromal cells, regional lymph nodes, angiogenesis in remote tissues

Список литературы: 
  1. Mayborodin I.V., Morozov V.V., Novikova Ya.V., Matveeva V.A., Artem`eva L.V., Matveev A.L., Maslov R.V., Onoprienko N.V., Chastikin G.A. Angiogenez v tkanyah posle vvedeniya stromal`nyh stvolovyh kletok kostnomozgovogo proishozhdeniya ryadom s trombirovannoy venoy v e`ksperimente. Morfologiya. 2015; 148 (4): 12–8. [Maiborodin I.V., Morozov V.V., Novikova Y.V., Matveyeva V.A., Artemiyeva L.V., Matveyev A.L., Maslov R.V., Onopriyenko N.V., Chastikin G.A. Angiogenesis in the tissues after the injection of stromal stem cells of bone marrow origin close to thrombosed vein in an experiment. Morfologiia. 2015; 148 (4): 12–8 (in Russian)]
  2. Mayborodin I.V., Morozov V.V., Matveeva V.A., Anikeev A.A., Figurenko N.F., Maslov R.V., Chastikin G.A., Mayborodina V.I. Rezul`taty ispol`zovaniya kletochnyh tehnologiy pri ligirovanii magistral`noy veny v e`ksperimente. Byulleten` e`ksperimental`noy biologii i mediciny. 2017; 164 (7): 73–80. [Maiborodin I.V., Morozov V.V., Matveeva V.A., Anikeev A.A., Figurenko N.F., Maslov R.V., Chastikin G.A., Maiborodina V.I. Results of experimental ligation of the main vein with the use of cell technologies. Bull Exp. Biol. Med. 2017; 164 (1): 61–7 (in Russian)]
  3. Mayborodin I.V., Morozov V.V., Matveeva V.A., Chastikin G.A., Moshak S.V., Onoprienko N.V., Seryapina Yu.V., Anikeev A.A. Vozmozhnost` primeneniya mezenhimnyh stromal`nyh kletok dlya vosstanovleniya limfotoka pri e`ksperimental`nom flebotromboze. Kletochnye tehnologii v biologii i medicine. 2015; 4: 258–64. [Maiborodin I.V., Morozov V.V., Matveeva V.A., Chastikin G.A., Moshak S.V., Onoprienko N.V., Seryapina Y.V., Anikeev A.A. Possibility of using mesenchymal stromal cells to restore lymph flow in experimental phlebothrombosis. Bull Exp. Biol. Med. 2016; 160 (4): 565–70 (in Russian)]
  4. Mendes-Jorge L., Ramos D., Luppo M., Llombart C., Alexandre-Pires G., Nacher V., Melgarejo V., Correia M., Navarro M., Carretero A., Tafuro S., Rodriguez-Baeza A., Esperança-Pina J.A., Bosch F., Ruberte J. Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier. Invest Ophthalmol Vis Sci. 2009; 50 (12): 5997–6005.
  5. Mitchell A.J., Pradel L.C., Chasson L., van Rooijen N., Grau G.E., Hunt N.H., Chimini G. Technical advance: autofluorescence as a tool for myeloid cell analysis. J. Leukoc Biol. 2010; 88 (3): 597–603.
  6. Wu X., Pan L., Wang Z., Liu X., Zhao D., Zhang X., Rupp R.A., Xu J. Ultraviolet irradiation induces autofluorescence enhancement via production of reactive oxygen species and photodecomposition in erythrocytes. Biochem Biophys Res Commun. 2010; 396 (4): 999–1005.
  7. Campo J.J., Aponte J.J., Nhabomba A.J., Sacarlal J., Angulo-Barturen I., Jiménez-Diaz M.B., Alonso P.L., Dobaño C. Feasibility of flow cytometry for measurements of Plasmodium falciparum parasite burden in studies in areas of malaria endemicity by use of bidimensional assessment of YOYO-1 and autofluorescence. J. Clin. Microbiol. 2011; 49 (3): 968–74.
  8. Watson J. Suppressing autofluorescence of erythrocytes. Biotech Histochem. 2011; 86 (3): 207.
  9. Li F., Yang M., Wang L., Williamson I., Tian F., Qin M., Shah P.K., Sharifi B.G. Autofluorescence contributes to false-positive intracellular Foxp3 staining in macrophages: a lesson learned from flow cytometry. J. Immunol. Methods. 2012; 386 (1–2): 101–7.
  10. Yamaza T., Kentaro A., Chen C., Liu Y., Shi Y., Gronthos S., Wang S., Shi S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010; 1 (1): 5.
  11. Fu K., Xu Q., Czernuszka J., McKenna C.E., Ebetino F.H., Russell R.G., Triffitt J.T., Xia Z. Prolonged osteogenesis from human mesenchymal stem cells implanted in immunodeficient mice by using coralline hydroxyapatite incorporating rhBMP2 microspheres. J. Biomed. Mater Res A. 2010; 92 (4): 1256–64.
  12. Niemeyer P., Schönberger T.S., Hahn J., Kasten P., Fellenberg J., Suedkamp N., Mehlhorn A.T., Milz S., Pearce S. Xenogenic transplantation of human mesenchymal stem cells in a critical size defect of the sheep tibia for bone regeneration. Tissue Eng Part A. 2010; 16 (1): 33–43.
  13. Niemeyer P., Szalay K., Luginbühl R., Südkamp N.P., Kasten P. Transplantation of human mesenchymal stem cells in a non-autogenous setting for bone regeneration in a rabbit critical-size defect model. Acta Biomater. 2010; 6 (3): 900–8.
  14. Mayborodin I.V., Gavrilin V.N., Borodin Yu.I., Reyhert V.E`. Klapany kraevogo sinusa limfaticheskih uzlov. Morfologiya. 1996; 110 (6): 86–8. [Maĭborodin I.V., Gavrilin V.N., Borodin Iu.I., Reĭkhert V.E. The valves of the marginal sinus of the lymph nodes]. Morfologiia. 1996; 110 (6): 86–8 (in Russian)]
  15. Lei L., Tzekov R., Tang S., Kaushal S. Accumulation and autofluorescence of phagocytized rod outer segment material in macrophages and microglial cells. Mol Vis. 2012; 18: 103–13.
  16. Luhmann U.F., Robbie S., Munro P.M., Barker S.E., Duran Y., Luong V., Fitzke F.W., Bainbridge J.W., Ali R.R., MacLaren R.E. The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci. 2009; 50 (12): 5934–43.
  17. Martin-Rendon E., Hale S.J., Ryan D., Baban D., Forde S.P., Roubelakis M., Sweeney D., Moukayed M., Harris A.L., Davies K., Watt S.M. Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells. 2007; 25 (4): 1003–12.
  18. Hu X., Yu S.P., Fraser J.L., Lu Z., Ogle M.E., Wang J.A., Wei L. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac Cardiovasc Surg. 2008; 135 (4): 799–808.
  19. Lykov A.P., Nikonorova Yu.V., Bondarenko N.A., Poveshhenko O.V., Kim I.I., Poveshhenko A.F., Konenkov V.I. Izuchenie proliferacii, migracii i produkcii oksida azota kostnomozgovymi mul`tipotentnymi mezenhimnymi stromal`nymi kletkami krys Vistar pri gipoksii i giperglikemii. Byulleten` e`ksperimental`noy biologii i mediciny. 2015; 159 (4): 432–4. [Lykov A.P., Nikonorova Y.V., Bondarenko N.A., Poveshchenko O.V., Kim I.I., Poveshchenko A.F., Konenkov V.I. Proliferation, migration, and production of nitric oxide by bone marrow multipotent mesenchymal stromal cells from Wistar rats in hypoxia and hyperglycemia. Bull. Exp. Biol. Med. 2015; 159 (4): 443–5 (in Russian)]
  20. Konenkov V.I., Borodin Yu.I., Dergacheva T.I., Shurlygina A.V., Tenditnik M.V., Starkova E.V., Poveshhenko O.V., Lykov A.P. Vliyanie kostnomozgovyh mul`tipotentnyh mezenhimnyh stromal`nyh kletok i produktov ih sekrecii na mikrocirkulyaciyu v shirokoy svyazke matki krys Vistar pri e`ksperimental`nom hronicheskom vospalenii genitaliy. Byulleten` e`ksperimental`noy biologii i mediciny. 2017; 163 (1): 93–7. [Konenkov V.I., Borodin Y.I., Dergacheva T.I., Shurlygina A.V., Tenditnik M.V., Starkova E.V., Poveshchenko O.V., Lykov A.P. Effects of bone marrow multipotent mesenchymal stromal cells and their secretory products on microcirculation in the broad ligament of the uterus of Wistar rats during experimental chronic genital inflammation. Bull. Exp. Biol. Med. 2017; 163 (1): 78–81 (in Russian)]