MELATONIN AND CIRCADIAN RHYTHMS IN THE SYSTEM «MOTHER-PLACENTA-FETUS»

DOI: https://doi.org/10.29296/24999490-2018-06-02

I.I. Evsyukova, I.M. Kvetnoy D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint-Petersburg, 199034, Russian Federation Е-mail: [email protected]

The review summarizes a number of the published reports about the structure of the core circadian oscillator system and the melatonin’s role as an interface of endogenous rhythms for the cyclic environment what optimizes maternal, placental and fetal physiology. Placenta’s melatonin is demonstrated to be produced via autocrine, paracrine and intracrine processes to provide the morphological development and stability of placenta’s functions with the circadian expression placenta’s clock genes related to the maternal melatonin’s rhythm. The results of experimental and clinical investigations testify that during the intrauterine life the fetal suprachiasmatic nuclei (SCN) and fetal organs are peripheral maternal circadian oscillators entrained by the maternal melatonin cycle. Maternal circadian rhythms are influential in the entrainment and programming of fetal and newborn circadian rhythms. After the delivery, it will allow for postnatal integration of the scattered fetal peripheral circadian clocks into an adult-like circadian system controlled by the SCN and entrained to the light-dark cycle. Circadian disruption of maternal melatonin production during pregnancy may impinge on specific fetal peripheral clocks leading to the development of long-term pathology.
Keywords: 
melatonin, circadian system, pregnancy, placenta, fetus, newborn

Список литературы: 
  1. Melatonin: teoriya i praktika. Pod red. Rapoporta S.I., Golichenkova V.A. M.: Medpraktika-M, 2009; 100. [Melatonin: teorija i praktika. Ed. By S.I. Rapoport, V.A.Golichenkov. M.: Medpraktika-M, 2009; 100 (in Russian)]
  2. Macchi M.M., Bruce J.N. Human pineal physiology and functional significance of Melatonin. Frontiers in Neuroendocrinology. 2004; 25 (3–4): 177–95. https://doi.org/10.1016/j.vfrne.2004.o8.001.
  3. Pandi-Perumal S.R., Srinivasan V., Maestroni G.J.M., Cardjnali D.P., Poegeller B., Hardeland R. Melatonin. Nature’s most versatile biological signal? FEBS J. 2006; 273 (13): 2813–38. https://doi.org/10.1111/j.1742-4658.2006.o\05322x
  4. Melatonin v norme i patologii. Pod red. F.I. Komarova, S.I. Rapoporta, N.K. Malinovskoy, V.N. Anisimova. M.: Medpraktika-M, 2004; 308. [Ed. By Komarov F.I., Rapoport S.I., Malinovskaja N.K., Anisimov V.N. red. Melatonin v norme i patologii. M.: Medpraktika-M, 2004; 308 (in Russian)]
  5. Boden M.J., Varcoe T.J., Kennaway D.J. Circadian regulation of reproduction: From gamete to offspring. Prog. Biophys. Mol. Biol. 2013; 113 (3): 387–97. https://doi.org/10.1016/j.pbiomolbio.2013.01.003
  6. Mauriz J.L., Collado P.S., Veneroso C., Reiter R.J., Gonzalez-Gallego J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: resent insights and new perspectives. J. Pineal Res. 2013; 54 (1): 1–14. https://doi.org/10.1111/j.1600-079X.2012.01014.x.
  7. Arendt J., Skene D.J. Melatonin as chronobiotic. Sleep Med. Rev. 2005; 9 (1): 25–39. https://doi.org/10.1016/j.smrv.2004.05.002.
  8. Bedrosian T.A., Herring K.L., Walton G.C., Fonken L.K., Weil Z.M., Nelson R.J. Evidence for feedback control of pineal melatonin secretion. Neurosci Lett. 2013; 542 (10): 123–5. https://doi.org/10.1016/j.neulet.2013.03.021.
  9. Menaker M., Murphy Z.C., Sellix M.T. Central control of peripheral oscilators. Curr. Opin. Neurobiol. 2013; 23 (5): 741–6. https://doi.org/10.1016/j.conb.2013.03.003
  10. Mazzoccoli G. The timing clock work of life. J. Biol. Regul. Homeost. Agents. 2011; 25: 137–43. PMID: 21382283.
  11. Lucas R.J. Mammalian inner retinal photoreception. Curr. Biol. 2013; 23: 125–33. https://doi.org/10.1016/j.cub.2012.12.029
  12. Dibner C., Schibler U., Albrecht U. The mammalian circadian timing system. Ann. Rev. Physiol. 2010; 72: 517–49. https://doi.org/10.1146/annurev-physiol-021909-135821.
  13. Reiter R.J., Rosales-Corral S., Coto-Montes A., Boga J.A., Tan D-X., Davis J.M., Konturek S.J., Brzozowski T. The photoperiod, circadian regulation and chronodisruption: the requisite inter play between the suprachiasmatic nuclei and the pineal and gut melatonin. J. Physiol. Pharmacol. 2011; 62 (3): 269–74. PMID: 21893686.
  14. Welsh D.K., Takahashi J.S., Kay S.A. Suprachiasmatic nucleus: cell autonomy and network properties. Ann. Rev Physiol. 2010; 72: 551–7. PMID: 21893686.
  15. Kvetnoy I.M., Rayhlin N.T., Yuzhakov V.V., Ingel` I.E`. E`kstrapineal`nyy melatonin: mesto i rol` v neyroe`ndokrinnoy regulyacii gomeostaza. Byul. e`ksper. biol. 1999; 127 (4): 364–70. [Kvetnoj I.M., Rajhlin N.T., Juzhakov V.V., Ingel’ I.Je. Jekstrapineal’nyj melatonin: mesto i rol’ v nejrojendokrinnoj reguljacii gomeostaza. Bjulleten’ jeksperimental’noj biologii. 1999; 127 (4): 364–70 (in Russian)]
  16. Tan D.X., Manchester L.C., Liu X., Rosales-Corral S.A., Acuna-Castroviejo D., Reiter R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 2013; 54 (2): 127–38. https://doi.org/10.1111/jpi.12026.
  17. Reiter R.J., Rosales-Corral S.A., Manchester L.C., Tan D-X. Peripheral Reproductive Organ Health and Melatonin: Ready for Prime Time. Int. J. Mol. Sci. 2013; 14 (4): 7231–72. https://doi.org/10.3390/ijms14047231.
  18. Venegas C., Garcia J.A., Escames G., Ortiz F., Lorez A., Doerrier C., Garcia-Corzo L., Lorez L.C., Reiter R.J., Acuna-Castoroviejo D. Extrapineal melatonin analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 2012; 52 (2): 217–27. https://doi.org/10.1111/j.1600-079X.2011.00931.x.
  19. Cardinali D.P., Lynch H.J., Wurtman R.J. Binding of melatonin to human and rat plasma proteins. Endocrinology. 1972; 91 (5): 1213–8. PMID: 4538504.
  20. Ma X., Idle J.R., Krausz K.W., Gonzalez F.JJ. Metabolism of melatonin by human cytochromes p450. Drug Metab. Dispos. 2005; 33 (4): 489–94. https://doi.org/10.1124/dmd.104.002410.
  21. Dubocovich M.L. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep. Med. 2007; 8 (3): 34–42. PMID: 18032103.
  22. Reppert S.M., Weaver D.R., Ebisawa T., Mahle C.D., Kolakowski. Cloning of a melatonin-related receptor from human pituitary. FEBS Lett. 1996; 386 (2–3): 219–24. PMID: 8647286.
  23. Reiter R.J, Tamura H., Tan D.H., Xu H-Y. Melatonin and the circadian system: contributions to successful female reproduction. Fertil. Steril. 2014; 102 (2): 321–8. https://doi.org/10.1016/j.fertnstert.2014.06.014.
  24. Reppert S.M., Godson C., Mahle C.D., Weaver D.R., Slaugenhaupt S., Gusella J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc. Natl. Acad. Sci. USA. 1995; 92 (19): 8734–8. PMID: 7568007.
  25. Bedrosian T.A., Herring K.L., Walton G.C., Fonken L.K., Weil Z.M., Nelson R.J. Evidence for feedback control of pineal melatonin secretion. Neurosci Lett. 2013; 542 (10): 123–5. https://doi.org/10.1016/j.neulet.2013.03.021.
  26. Fjaerli O., Lund T., Osterud B. The effect of melatonin on cellular activation processes in human blood. J. Pineal Res. 1999; 26 (1): 50–5. PMID: 10102760.
  27. Erren T.S., Reiter R.J. Melatonin: a universal time messenger. Neuro Endocrinol. Lett. 2015; 36 (3): 187–92. PMID: 20313381.
  28. Valenzuela F.J., Vera J., Venegas C., Pino F., Lagunas C. Circadian System and Melatonin Hormone: Risk Factors for Complications during Pregnancy. Obstet. Gynecol. Int. 2015; 2015: 825802. https://doi.org/10.1155/2015/825802.
  29. Kivela A. Serum melatonin during human pregnancy. Acta Endocrinol (Copengagen). 1991; 124 (3): 233–7. PMID: 2011913.
  30. Nakamura N.Y., Tamura H., Kashida S., Takayama H., Yagamata Y., Karube A., Sugino N., Kato H. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J. Pineal Res. 2001; 30 (1): 29–33. PMID 11168904.
  31. Soliman A., Lacasse A.A., Lanoix D., Sagrillo-Fagundes L., Boulard V., Vaillancourt C. Placental melatonin system is present throughtout and regulates villous trophoblast differentiation. J. Pineal Res. 2015; 59 (1): 38–46. https://doi.org/10. 1111/jpi.12236.
  32. Iwasaki S., Nakazawa K., Sacai J., Kometani K., Iwashita M., Yoshimura Y., Maruyama I. Melatonin as local regulator of human placental function. J. Pineal Res. 2005; 39: 261–5. https://doi.org/10.1111/j.1600-079X.2005.00244.x.
  33. Reiter R.J., Tan D.X., Korkmaz A., Rosales-Corral S.A. Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update. 2014; 20 (2): 293–307. https://doi.org/10.1093/humupd/dmt054.
  34. Sagrilo-Fagundes L., Soliman A., Vaillancourt C. Maternal and placental melatonin: actions and implication for successful pregnancies. Minerva Gynecol. 2014; 66 (3): 251–66. PMID: 24971781.
  35. Kvetnoy I.M., Aylamazyan E`.K., Lapina E.A., Kolobov A.V. Signal`nye molekuly-markery zrelosti placenty. M.: MEDpress-inform, 2005; 96. [Kvetnoj I.M., Ajlamazjan Je.K., Lapina E.A., Kolobov A.V. Signal’nye molekuly – markery zrelosti placenty. M.: MEDpress-inform, 2005; 96 (in Russian)]
  36. Frigato E., Lunghi L., Ferretti M.E., Biondi C., Bertolucci C. Evidence for circadian rhythms in human trophoblast cell line that persist in hypoxia. Biochem. Biophys. Res. Communications. 2009; 378 (1): 108–11. https://doi.org/10.1016/j.bbrc.2008.11.006.
  37. Wharfe M.D., Mark P.J., Waddell B.J. Circadian variation in placental and hepatic clock genes in rat pregnancy. Endocrinology. 2011; 152 (9): 3552–60. https://doi.org/10.1210/en.2011-0081.
  38. Waddell B.J., Wharfe M.D., Crew R.C., Mark P.J. A rhythmic placenta? Circadian variation Clock genes and placental function. Placenta. 2012; 33 (7): 533–9. https://doi.org/10.1016/j.placenta.2012.03.008.
  39. Mark P., Wharfe M.D., Lewis J.L., Waddell B.J. Circadian variation in components of the placental glucocorticoid barrier contribute the rhythmic placental and fetal glucocorticoid exposure in the rat. Placenta. 2011; 32: 137. https://doi.org/10.1015/j.placenta.2010.12.007.
  40. Waddell B.J., Wharfe M.D., Lewis J.L., Mark P.J. Circadian variation expression in nutrient transporter in rat placenta. J. Develop. Origins Health. Disease. 2011; 2 (1): 16. https://doi.org/10.1210/en.2011.0081.
  41. Olcese J., Lozier S., Paradise C. Melatonin and the circadian timing of human parturition. Reprod. Sci. 2013; 20 (2): 168–74. https://doi.org/10.1177/1933719112442244.
  42. Kennaway D.J., Goble F.C., Stamp G.E. Factors influencing the development of melatonin rhythmicity in humans. J. Clin. Endocrinol. Metab. 1996; 81 (4): 1525–32. PMID: 8636362.
  43. Tamura H., Nakamura Y., Terron M.P., Flores L.J., Manchester L.C., Tan D-X., Sugino N., Reiter R.J. Melatonin and pregnancy in the human. Reprod. Toxicol. 2008; 25 (3): 291–303. https://doi.org/10.16/j.reprotox.2008.03.005.
  44. Kennaway D.J. Melatonin and development physiology and pharmacology. Sem. Perinatol. 2000; 24: 258–66. PMID 10975432.
  45. Torres-Farfan C., Valenzuela F.J., Germain A.M., Viale M.N., Campino C., Torrealba F., Valenzuela G.J., Richter H.G., Seron-Ferre M. Maternal melatonin stimulates growth and prevents maturations of the capuchin monkey fetal adrenal gland. J. Pineal Res. 2006; 41 (1): 58–66. https://doi.org/10.1111/j.1600-079X.2006.00331x.
  46. Torres-Farfan C., Rocco V., Monso C., Valenzuela F.J. et al. Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology. 2006; 147 (10): 4618–26. PMID: 16840546.
  47. Kovacikova Z., Sladek M., Bendova Z., MIllnerova H., Simova A. Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development. Biol. Rhythms. 2006; 21 (2): 140–8. PMID: 16603678.
  48. Gozeri E., Celik H., Ozercan I., Gurates B,. Poltat S.A., Hanay F. The effect of circadian rhythm changes on fetal and placental development. Neuroendocrinology Letter. 2008; 29 (1): 87–90. PMID: 18283242.
  49. Seron-Ferre M., Torres-Farfan C., Forcelledo M.L., Valenzuela G.J. The development of circadian rhythms in the fetus and neonate. Semin. Perinatol. 2001; 25 (6): 363–70. PMID: 11778907.
  50. Seron-Ferre M., Valenzuela G.J, Torres-Farfan C. Circadian clocks during embryonic and fetal development. Birth Defects Res. (Part C). 2007; 81 (3): 204–14. https://doi.org/10.1002/bdrc.20101
  51. Varcoe T.J., Boden M.J., Voultsios A., Salkeld M.D., Rattanatray L., Kennaway D.J. Characterisation of the Maternal Response to Chronic Phase Shifts during Gestation in the Rat: Implications for Fetal Metabolic Programming. PloS ONE 2013; 8 (1): e53800. https://doi.org/10.1371/journal.pone0053800
  52. Torres-Farfan C., Seron-Ferre M., Dinet V., Korf H.W. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin- deficient (C57BL) mice. I Pineal Res. 2006; 40 (1): 64–70. PMID: 16313500.
  53. Thomas L., Drew J.E., Abramovich D.R., Williams L.M. The role of melatonin in the human fetus (review). Int. J. Mol. Med. 1998; 1 (3): 539–43. PMID: 9852259.
  54. Mirmiran M., Maas Y.G., Ariagno R.L. Development of fetal and neonatal sleep and circadian rhythms. Sleep. Med. Rev. 2003; 7 (4): 321–34. PMID: 14505599.
  55. Mendez N., Abarzua-Catalan L., Vilches N., Galdames H.A. et al. Timed Maternal Melatonin Treatment Reverses Circadian Disruption of the Fetal Adrenal Clock Imposed by Exposure to Constant Light. PloS ONE. 2012; 7 (8): e42713. https://doi.org/10.1371/journal.pone0042713.
  56. Seron-Ferre M., Torres C., Parraguez V.H., Vergara M., Valladares L., Forcelledo M.L., Constandil L., Valenzuela G.J. et al. Perinatal neuroendocrine regulation. Development of the circadian time-kiping system. Mol. Cell. Endocrin. 2002; 86 (2): 169–73. PMID: 11900892.
  57. Kivela A., Kauppila A., Leppaluotoj, Vakkuri O. Melatonin in infants and mothers at delivery and in infants during the first week of life. Clin. Endocrinol. (Oxf). 1990; 32 (5): 593–8. PMID: 2364563.
  58. Vicente P., Garcia A., Alvarez E., Clemente S., Biazguez E. Presence of melatonin in the umbilical cord blood of full-term human newborn. J. Pineal. Res. 1989; 6 (2): 135–40. PMID: 2915323.
  59. Evsyukova I.I., Koval`chuk-Kovalevskaya O.V., Maslyanyuk N.A., Dodhoev D.S. Osobennosti ciklicheskoy organizacii sna i produkcii melatonina u zdorovyh donoshennyh novorozhdennyh detey s zaderzhkoy vnutriutrobnogo razvitiya. Fiziol. cheloveka. 2013; 39 (6): 63–71. https://doi.org/10.7868/S0131164613060040. [Evsyukova I.I., Koval’chuk-Kovalevskaya O.V., Maslyanyuk N.A., Dodkhoev D.S. Features of cyclic sleep organization and melatonin production in full-term newborns with intrauterine growth retardation. Human Physiology. 2013; 39 (6): 617–24 (in Russian)] https://doi.org/10.7868/S0131164613060040.
  60. Munoz-Hoyos A., Jaldo-Alba F., Molina-Carballo A., Rodriguez-Cabezas T., Molina-Font J.A., Acuna-Castroviejo D. Absence of Plasma Melatonin Circadian Rhythm during the First 72 Hours of Life in Human Infants. J. Clin. Endocrinol. Metab. 1993; 77 (3): 699–703. PMID: 8370692.
  61. Ogasawara T., Agachi N., Nishijima M. Melatonin levels in maternal plasma before and during delivery, and in fetal and neonatal plasma. Nihon. Sanka Fujinka Gakkai Zasshi. 1991; 43 (3): 335–41. PMID: 2045702.
  62. McGraw K., Hoffmann R., Harker C., Herman J.H. The development of circadian rhythms in human infant. Sleep. 1999; 22 (3): 303–10. PMID: 10341380.
  63. Seron-Ferre M., Mendez M., Abarzua-Catalan L., Vilches N. Valenzuela F.J., Reynolds H.E., Llanos A.J., Rojas A., Valenzuela G.J., Torres-Farfan C. Circadian rhythms in the fetus. Mol. Cell. Endocrinology. 2012; 349 (1): 68–75. https://doi.org/10.1016/j.mce.2011.07.039.
  64. Mendez N., Halabi D., Spichiger C., Salazar E.R., Vergata K. et al Gestational Chronodisruption Impairs Circadian Physiology in Rat Male Offspring, Increasing the Risk of Chronic Disease. Endocrinology. 2016; 157 (12): 4654–68. https://doi.org/10. 1210/en 2016-1282.
  65. Simonneaux V. Naughty melatonin. How mothers tick off their fetus. Endocrinology. 2011; 152 (5): 1734–8. https://doi.org/10.1210/en.2011-0226.
  66. Tain Y-L., Huang L-T., Hsu C-N. Developmental Programming of Adult Disease: Reprogramming by Melatonin? Int. J. Mol. Sci. 2017; 18 (2): 381. https://doi.org/10.3390/ijms18020381.
  67. Ferreira D.S., Amaral F.G., Mesquita C.C., Barbosa A.P.L., Santos C.L., Turati A.O., Santos L.R., Sollon C.S., Gomes P.R., Faria J.A., Neto J.C., Bordin S., Anhe G.F. Maternal Melatonin Programs the Daily Patte. https://doi.org/10.1371/journal.pone.0038795rn of Energy Metabolism in Adult Offspring. PloS ONE. 2012; 7 (6): e38795. https://doi.org/10.1371/journal.pone.0038795.