PROTECTION OF NEURAL STEM CELLS FROM GENOTOXIC EFFECTS BY FACTORS SECRETED BY MESENCHYMAL STEM CELLS

DOI: https://doi.org/10.29296/24999490-2018-06-05

G.A. Posypanova(1), M.G. Ratushnyak(1, 2), O.V. Vysotskaya(1), A.I. Glukhov(2), Yu.P. Semochkina(1), A.V. Rodina(1, 2), E.Yu. Moskaleva(1, 2) 1-National Research Centre «Kurchatov Institute», Akademika Kurchatova pl., 1, Moscow, 123182, Russian Federation; 2-I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8–2, Moscow, 119991, Russian Federation E-mail: [email protected]

Introduction. The brain injury induced during radiotherapy and chemotherapy is largely dependent on a disruption of neurogenesis in the subgranular zone of the dentate gyrus in the hippocampus as a result of the neural stem cells (NSCs) damage. The aim of the study. The purpose of this work was to characterize the protective potential of mesenchymal stem cells (MSCs) isolated from different mouse tissues, on the level of gene expression and activity of neurotrophins and on the secretion of a number of cytokines, and to study the possibility of the increasing in the survival of mouse NSCs after irradiation and after the action of etoposide, an antitumor drug that causes DNA damage. Results. A high sensitivity of the mouse NSCs to the action of γ-radiation and etoposide is shown. When comparing MSCs from bone marrow, brain and adipose tissue, the highest level of neurotrophin genes NGF, BDNF, NT4 and GDNF expression is found in MSCs from the adipose tissue. The high activity of neurotrophins, high concentration of IL6, HGF, TGFβ and VEGF and the absence of G-CSF, bFGF and IL10 cytokines were detected in the culture medium conditioned with MSC from the adipose tissue. An increase in the survival of NSCs was observed when NSCs were cultured in the presence of conditioned medium from mouse adipose tissue-derived MSCs, both after the gamma-irradiation and after the action of etoposide. Conclusion. The results explain the protective effect of MSCs in radiation injuries and for the first time demonstrate an increase in the NSCs survival after irradiation and the action of etoposide due to the influence of secreted MSCs factors.
Keywords: 
neural stem cells, radiosensitivity, etoposide, mesenchymal stem cells, neurotrophins, cytokines, cell therapy, mouse

Список литературы: 
  1. Johannesen T.B., Lien H.H., Hole K.H., Lote K. Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol. 2003; 69 (2): 169–76.
  2. Nokia M.S., Anderson M.L., Shors T.J. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain. Eur. J. Neurosci. 2012; 36 (11): 3521–30.
  3. Raber J., Rola R., LeFevour A., Morhardt D., Curley J., Mizumatsu S., VandenBerg S.R., Fike J.R. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res. 2004, 162 (1): 39–47, 77.
  4. Christie L.A., Acharya M.M., Parihar V.K., Nguyen A., Martirosian V., Limoli C.L. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin. Cancer Res. 2012; 18 (7): 1954–65.
  5. Kiang JG. Adult Mesenchymal Stem Cells and Radiation Injury. Health Phys. 2016; 111 (2): 198–203.
  6. Munoz J.R., Stoutenger B.R., Robinson A.P., Spees J.L., Prockop D.J. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA. 2005; 102 (50): 18171–6.
  7. Acharya M.M., Christie L.A., Hazel T.G., Johe K.K., Limoli C.L. Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation . Cell Transplant. 2014; 23 (10): 1255–66.
  8. Baraniak P.R., McDevitt T.C. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010; 5 (1): 121–43.
  9. Ratushnyak M.G., Severin S.E. Rol` citokinov, sekretiruemyh mezenhimal`nymi stvolovymi kletkami, v stimulyacii processov regeneracii mozga. Molekulyarnaya medicina. 2017; 15 (1): 10–4. [Ratushnjak M.G., Severin S.E. The role of cytokines secreted by mesenchymal stem cells in stimulating the processes of brain regeneration. Molmed (Russia). 2017; 15 (1): 10–4 (in Russian)]
  10. Egashira Y., Sugitani S., Suzuki Y., Mishiro K., Tsuruma K., Shimazawa M., Yoshimura S., Iwama T., Hara H. The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res. 2012; 1461: 87–95.
  11. Gao Z., Zhang Q., Han Y., Cheng X., Lu Y., Fan L., Wu Z. Mesenchymal stromal cell-conditioned medium prevents radiation-induced small intestine injury in mice. Cytotherapy. 2012; 14 (3): 267–73.
  12. Cavazzin Ch., Neri M., Gritti A. Isolate and Culture Precursor Cells from the Adult Periventricular Area. Methods in Molecular Biology. 2013; 1059: 25–40.
  13. Posypanova G.A., Moskaleva E.Yu., Rodina A.V., Semochkina Yu.P., Ratushnyak M.G., Perevozchikova V.G. Deystvie malyh i subletal`nyh doz γ-izlucheniya na mezenhimal`nye i neyral`nye stvolovye kletki iz golovnogo mozga myshi. Radiacionnaya biologiya. Radioe`kologiya. 2016; 56 (1): 35–43. [Posypanova G.A., Moskaleva E.Y., Rodina A.V., Semochkina Y.P., Ratushnjak M.G., Perevozchikova V.G. Effects of Low and Sublethal Doses of γ-Radiation on Mesenchymal and Neural Stem Cells from Mouse Brain. Radiat. Biol. Radioecol. 2016; 56 (1): 35–43 (in Russian)]
  14. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002; 13 (12): 4279–95.
  15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol Methods. 1983; 65 (1–2): 55–63.
  16. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987; 162: 156–9.
  17. Gluhov A.I., Vysockaya O.V., Svinareva L.V., Zimnik O.V., Bykov I.I., Horobryh T.V. Antiapoptoticheskie faktory servivin i telomeraza v diagnostike raka zheludka. Molekulyarnaya medicina. 2011; 9 (1): 35–40. [Glukhov A.I., Vysotskaya O.V., Svinareva L.V., Zimnik O.V., Bykov I.I., Chorobrych T.V. Antiapoptotic factors servivin and telomerase in the diagnostics of gastric cancer. Molmed (Russia). 2011; 9 (1): 35–40 (in Russian)]
  18. Novosadova E.V., Arsen’eva E.L., Kobylyanskii A.G., Lebedev A.N., Manuilova E.S., Tarantul V.Z., Khaidarova N.V., Grivennikov I.A. Effect of the Expression of the Human pub Gene on the Proliferation and Differentiation of Rat Pheochromocytoma PC-12 Cells. Neurochem. J. 2011; 5 (1): 69–72.
  19. Nguyen N., Lee S.B., Lee Y.S., Lee K.H., Ahn J.Y. Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem. Res. 2009; 34 (5): 942–51.
  20. Crigler L., Robey R.C., Asawachaicharn A. et al. Human mesenchymal stem cell subpopulations express a variety of neuroregulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol. 2006; 198 (1): 54–64.