ASSOCIATION OF GENETIC MARKERS WITH THE DEVELOPMENT OF ENDOCARDITIS OF NONINFECTIOUS AND INFECTIOUS ETIOLOGY

DOI: https://doi.org/10.29296/24999490-2018-06-09

Yu.S. Bakhareva(1), V.N. Maksimov(1, 2), A.A. Ivanova(1), N.N. Chapaeva(2) 1-Scientific-research Institute of Therapy and Preventive Medicine – the branch of the Federal Research Center Institute of Cytology and Genetics, B. Bogatkova str., 175/1, Novosibirsk, 630089, Russian Federation; 2-Novosibirsk State Medical University, Krasny Prospekt, 52, Novosibirsk, 630091, Russian Federation E-mail: [email protected]

Introduction. New technologies of DNA genotyping and sequencing contribute to the rapid accumulation of our knowledge about human genomic variations and search for inherited determinants of complex genetic traits. There is a large amount of data on associations of single nucleotide polymorphisms in the genes of the hemostatic system and folate cycle with the development of cardiovascular diseases. Objective: to identify possible associative links between polymorphisms of candidate genes and the development of endocarditis of infectious and noninfectious genesis. Results. 175 examined patients were divided into two groups: the first included 81 non – infectious endocarditis patient and the second -94 infectious endocarditis cases. There was found an association between endocarditis and rs1126643 (759 C>T) of ITGA2 gene and rs1805087 (2756A>G) of MTR gene. Conclusion. We present a comparative analysis of genotype frequencies of polymorphisms of the twelve genes of the hemostatic system and the folate cycle. For two of the twelve polymorphisms studied by ourselves, an association with vegetations on the valve apparatus of the heart was revealed.
Keywords: 
noninfectious and infectious endocarditis, single-nucleotide polymorphism hemostasis

Список литературы: 
  1. Mannhalter C. Biomarkers for arterial and venous thrombotic disorders. Hamostaseologie. 2014; 34 (2): 115–20, 122–6, 128–30.
  2. Masud R., Baqai H.Z. The communal relation of MTHFR, MTR, ACE gene polymorphisms and hyperhomocysteinemia as conceivable risk of coronary artery disease. Appl Physiol Nutr Metab. 2017; 42 (10): 1009–14.
  3. Desch K.C. Dissecting the genetic determinants of hemostasis and thrombosis. Curr Opin Hematol. 2015; 22 (5): 428–36.
  4. Rath D., Schaeffeler E., Winter S., Levertov S., Müller K., Droppa M., Stimpfle F., Langer H.F., Gawaz M., Schwab M., Geisler T. GPla Polymorphisms Are Associated with Outcomes in Patients at High Cardiovascular Risk. Front Cardiovasc Med. 2017; 21 (4): 52.
  5. Habib G., Lancellotti P., Antunes M.J., Bongiorni M.G., Casalta J.P., Del Zotti F., Dulgheru R., El Khoury G., Erba P.A., Iung B., Miro J.M., Mulder B.J., Plonska-Gosciniak E., Price S., Roos-Hesselink J., Snygg-Martin U., Thuny F., Tornos Mas P., Vilacosta I., Zamorano J.L. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC) Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015; 36 (44): 3036–7.
  6. Ponasenko A.V., Kutikhin A.G., Khutornaya M.V., Odarenko Y.N., Kazachek Y.V., Tsepokina A.V., Barbarash L.S., Yuzhalin A.E. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis. Mediators Inflamm. 2017: https://doi.org/10.1155/2017/7962546 (4 June 2017).
  7. Man H.S., Yan M.S., Lee J.J., Marsden P.A. Epigenetic determinants of cardiovascular gene expression: vascular endothelium. Epigenomics. 2016; 8 (7): 959–79.
  8. Islam M.A., Khandker S.S., Alam F., Kamal M.A., Gan S.H. Genetic risk factors in thrombotic primary antiphospholipid syndrome: A systematic review with bioinformatic analyses. Autoimmun Rev. 2018; 17 (3): 226–43.
  9. Rovenskih D.N., Maksimov V.N., Tatarnikova N.P., Usov S.A., Voevoda M.I. Rol` molekulyarno-geneticheskih faktorov v riske razvitiya ostrogo tromboza glubokih ven nizhnih konechnostey. Byulleten` SO RAMN 2012; 32 (4): 90–3. [Rovenskih D.N., Maksimov V.N., Tatarnikova N.P., Usov S.A., Voevoda M.I. The role of molecular genetic factors in the risk of acute deep vein thrombosis in the lower limbs. Byulleten’ SO RAMN 2012; 32 (4): 90–3 (in Russian)]
  10. Hmimech W., Idrissi H.H., Diakite B., Baghdadi D., Korchi F., Habbal R., Nadifi S. Association of C677T MTHFR and G20210A FII prothrombin polymorphisms with susceptibility to myocardial infarction. Biomed Rep. 2016; 5 (3): 361–6.
  11. Watson H., Perez A., Ayesu K., Musa F., Sarriera J., Madruga M., Carlan S.J. Inherited factor II deficiency with paradoxical hypercoagulability: a case report. Blood Coagul Fibrinolysis. 2018; 29 (2): 223–6.
  12. Li C., Ren H., Chen H., Song J., Li S., Lee C., Liu J., Cui Y. Prothrombin G20210A (rs1799963) polymorphism increases myocardial infarction risk in an age-related manner: A systematic review and meta-analysis. Sci Rep. 2017; 7 (1): 13550.
  13. Siddique S., Risse J., Canaud G., Zuily S. Vascular Manifestations in Antiphospholipid Syndrome (APS): Is APS a Thrombophilia or a Vasculopathy? Curr Rheumatol Rep. 2017; 19 (10): 64.
  14. Gong D., Gu H., Zhang Y., Gong J., Nie Y., Wang J., Zhang H., Liu R., Hu S., Zhang H. Methylenetetrahydrofolate reductase C677T and reduced folate carrier 80 G>A polymorphisms are associated with an increased risk of conotruncal heart defects. Clin Chem Lab Med. 2012; 50 (8): 1455–61.
  15. Sundquist K., Wang X., Svensson P.J., Sundquist J., Hedelius A., Larsson Lönn S., Zöller B., Memon A.A. Plasminogen activator inhibitor-1 4G/5G polymorphism, factor V Leiden, prothrombin mutations and the risk of VTE recurrence. Thromb Haemost. 2015; 114 (6): 1156–64.
  16. Bustamante J., Tamayo E., Florez S., Telleria J.J., Bustamante E., López J., Román J.A., Álvarez F.J. Toll-Like Receptor 2 R753Q Polymorphisms Are Associated With an Increased Risk of Infective Endocarditis. Rev. Esp. Cardiol. 2011; 64 (11): 1056–9.