MOLECULAR AND EPIGENETIC FACTORS IN THE SCHIZOPHRENIA DEVELOPMENT

DOI: https://doi.org/10.29296/24999490-2019-02-02

A.N. Erichev(1), I.I. Bode(2), V.O. Polyakova(2, 3), A.P. Kotsyubinsky(1) 1-V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Bekhterev str., 3, Saint Petersburg, 192019, Russian Federation; 2-Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russian Federation; 3-Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, Saint Petersburg, 197110, Russian Federation E-mail: [email protected]

Schizophrenia is a severe psychiatric disorder with etiology not clearly determined yet. Scientists associate its development with various factors including excessive expression of some genes and unstable social environment. The World Health Organization estimates the prevalence of schizophrenic spectrum disorders as 21 million people worldwide. Moreover, some researchers note that such symptoms as paranoid thinking and hallucinations in a mild form can occur in 5–8% of the healthy population. This fact complicates the process of making the diagnosis. Laboratory tests or imaging methods that could accurately determine the presence of the disorder are yet to be developed as of today. In addition, the disorder can manifest in different ways which makes it difficult to assess the diagnosis reliability and prognosis. The dopamine hypothesis of schizophrenia was very popular previously, however, now it is gradually receding into the past giving the way to new, more progressive biopsychosocial and diathesis-stress hypotheses. In this article, the main factors that influence the schizophrenia development are considered. A better understanding of the disease pathogenesis may allow developing better diagnosis methods and more effective therapeutic approaches.
Keywords: 
schizophrenia, dopamine, dopamine hypothesis, diathesis-stress model, biopsychosocial model

Список литературы: 
  1. WHO|Schizophrenia. WHO. World Health Organization; 2016 [Дата обращения: 21 марта 2018].
  2. Waltzer H. The biopsychosocial model for brief inpatient treatment of the schizophrenic syndrome. Psychiatr. Q. 1982; 54: 97–108.
  3. Van Os J., Linscott R.J., Myin-Germeys I., Delespaul P., Krabbendam L. A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness–persistence–impairment model of psychotic disorder. Psychol. Med. 2009; 39: 179.
  4. Jablensky A. The diagnostic concept of schizophrenia: its history, evolution, and future prospects. Dialogues Clin. Neurosci. 2010; 12: 271–87.
  5. Jones S.R., Fernyhough C. A new look at the neural diathesis-stress model of schizophrenia: the primacy of social-evaluative and uncontrollable situations. Schizophr. Bull. 2007; 33: 1171–7.
  6. Nieratschker V., Nöthen M.M., Rietschel M. New Genetic Findings in Schizophrenia: Is there Still Room for the Dopamine Hypothesis of Schizophrenia? Front. Behav. 2010; 4: 23.
  7. Howes O.D., Kapur S. The Dopamine Hypothesis of Schizophrenia: Version III. The Final Common Pathway. Schizophr. Bull. 2009; 35: 549–62.
  8. O’Donovan M.C., Williams N.M., Owen M.J. Recent advances in the genetics of schizophrenia. Hum. Mol. Genet. 2003; 12: 125–33.
  9. Schadt E.E. Molecular networks as sensors and drivers of common human diseases. Nature. 2009; 461: 218–23.
  10. Sullivan P.F., Kendler K.S., Neale M.C. Schizophrenia as a Complex Trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry. 2003; 60: 1187.
  11. Esslinger C., Walter H., Kirsch P., Erk S., Schnell K., Arnold C., Haddad L., Mier D., Opitz von Boberfeld C., Raab K., Witt S.H., Rietschel M., Cichon S., Meyer-Lindenberg A. Neural Mechanisms of a Genome-Wide Supported Psychosis Variant. Science. 2009; 324: 605.
  12. Riley B., Thiselton D., Maher B.S., Bigdeli T., Wormley B., McMichael G.O., Fanous A.H., Vladimirov V., O’Neill F.A., Walsh D., Kendler K.S. Replication of association between schizophrenia and ZNF804A in the Irish Case–Control Study of Schizophrenia sample. Mol. Psychiatry. 2010; 15: 29–37.
  13. Steinberg S., Mors O., Børglum A.D., Gustafsson O., Werge T., Mortensen P.B., Andreassen O.A., Sigurdsson E., Thorgeirsson T.E., Böttcher Y., Olason P., Ophoff R.A., Cichon S., Gudjonsdottir I.H., Pietiläinen O.P., Nyegaard M., Tuulio-Henriksson A., Ingason A., Hansen T., Athanasiu L., Suvisaari J., Lonnqvist J., Paunio T., Hartmann A., Jürgens G., Nordentoft M., Hougaard D., Norgaard-Pedersen B., Breuer R., Möller H.J., Giegling I., Glenthøj B., Rasmussen H.B., Mattheisen M., Bitter I., Réthelyi J.M., Sigmundsson T., Fossdal R., Thorsteinsdottir U., Ruggeri M., Tosato S., Strengman E., Genetic Risk and Outcome in Psychosis, Kiemeney L.A., Melle I., Djurovic S., Abramova L., Kaleda V., Walshe M., Bramon E., Vassos E., Li T., Fraser G., Walker N., Toulopoulou T., Yoon J., Freimer N.B., Cantor R.M., Murray R., Kong A., Golimbet V., Jönsson E.G., Terenius L., Agartz I., Petursson H., Nöthen M.M., Rietschel M., Peltonen L., Rujescu D., Collier D.A., Stefansson H., St Clair D., Stefansson K. Expanding the range of ZNF804A variants conferring risk of psychosis. Mol. Psychiatry. 2011; 16: 59–66.
  14. Ujike H., Morita Y. New perspectives in the studies on endocannabinoid and cannabis: cannabinoid receptors and schizophrenia. J. Pharmacol. Sci. 2004; 96: 376–81.
  15. Akbarian S. Epigenetic mechanisms in schizophrenia. Dialogues Clin. Neurosci. 2014; 16: 405–17.
  16. Mill J., Tang T., Kaminsky Z., Khare T., Yazdanpanah S., Bouchard L., Jia P., Assadzadeh A., Flanagan J., Schumacher A., Wang S.C., Petronis A. Epigenomic Profiling Reveals DNA-Methylation Changes Associated with Major Psychosis. Am. J. Hum. Genet. 2008; 82: 696–711.
  17. Shorter K.R., Miller B.H. Epigenetic mechanisms in schizophrenia. Prog. Biophys. Mol. Biol. 2015; 118: 1–7.
  18. Brown A.S., Susser E.S. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr. Bull. 2008; 34: 1054–63.
  19. Ellman L.M., Susser E.S. The promise of epidemiologic studies: neuroimmune mechanisms in the etiologies of brain disorders. Neuron. 2009; 64: 25–7.
  20. Morrison P.D., Zois V., McKeown D.A., Lee T.D., Holt D.W., Powell J.F., Kapur S., Murray R.M. The acute effects of synthetic intravenous Δ9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol. Med. 2009; 39: 1607.
  21. O’Donovan M.C., Craddock N., Norton N., Williams H., Peirce T., Moskvina V., Nikolov I., Hamshere M., Carroll L., Georgieva L., Dwyer S., Holmans P., Marchini J.L., Spencer C.C., Howie B., Leung H.T., Hartmann A.M., Möller H.J., Morris D.W., Shi Y., Feng G., Hoffmann P., Propping P., Vasilescu C., Maier W., Rietschel M., Zammit S., Schumacher J., Quinn E.M., Schulze T.G., Williams N.M., Giegling I., Iwata N., Ikeda M., Darvasi A., Shifman S., He L., Duan J., Sanders A.R., Levinson D.F., Gejman P.V., Cichon S., Nöthen M.M., Gill M., Corvin A., Rujescu D., Kirov G., Owen M.J., Buccola N.G., Mowry B.J., Freedman R., Amin F., Black D.W., Silverman J.M., Byerley W.F., Cloninger C.R. Molecular Genetics of Schizophrenia Collaboration. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 2008; 40: 1053–5.
  22. Radhakrishnan R., Wilkinson S.T., D’Souza D.C. Gone to Pot A Review of the Association between Cannabis and Psychosis. Front. psychiatry. 2014; 5: 54.
  23. Volkow N.D. Substance use disorders in schizophrenia--clinical implications of comorbidity. Schizophr. Bull. 2009; 35: 469–72.
  24. Cantor-Graae E. The Contribution of Social Factors to the Development of Schizophrenia: A Review of Recent Findings. Can. J. Psychiatry. 2007; 52: 277–86.
  25. Potvin S., Stip E., Sepehry A.A., Gendron A., Bah R., Kouassi E. Inflammatory Cytokine Alterations in Schizophrenia: A Systematic Quantitative Review. Biol. Psychiatry. 2008; 63: 801–8.
  26. Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., Lanctôt K.L. A Meta-Analysis of Cytokines in Major Depression. Biol. Psychiatry. 2010; 67: 446–57.
  27. Брусов О.С., Фактор М.И., Злобина Г.П., Морозова М.А., Дупин А.М., Павлова Е.В., Бениашвили А.Г., Катасонов А.Б., Дмитриев А. Связь между показателями состояния серотониновой системы тромбоцитов и клиническими признаками психоза у больных приступообразно-прогредиентной шизофренией. Журнал неврологии и психиатрии им. С.С. Корсакова. 2007; 17–24.
  28. [Brusov O.S., Faktor M.I., Zlobina G.P., Morozova M.A., Dulin A.P., Pavlova E.V., Beniashvili A.G., Katasonov A.B., Dmitriev A. The relationship between indicators of the state of the serotonin platelet system and the clinical signs of psychosis in patients with paroxysmal progression-induced schizophrenia. Zhur. Nevr. i Psikh. im. S.S. Korsakova. J. of Neurology and Psychiatry named after S.S. Korsakov. 2007; 17–24 (in Russian)]
  29. Sekar A., Bialas A.R., de Rivera H., Davis A., Hammond T.R., Kamitaki N., Tooley K., Presumey J., Baum M., Van Doren V., Genovese G., Rose S.A., Handsaker R.E. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly M.J., Carroll M.C., Stevens B., McCarroll S.A. Schizophrenia risk from complex variation of complement component 4. Nature. 2016; 530: 177–83.
  30. Kim I.H., Rossi M.A., Aryal D.K., Racz B., Kim N., Uezu A., Wang F., Wetsel W.C., Weinberg R.J., Yin H., Soderling S.H. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat. Neurosci. 2015; 18: 883–91.