THE ROLE OF NF-κB AND von HIPPEL-LINDAU PROTEIN IN THE CREATION OF A MOLECULAR PORTRAIT OF KIDNEY CANCERS

DOI: https://doi.org/10.29296/24999490-2019-03-03

L.V. Spirina(1, 2), E.M. Slonimskaya(1, 2), Z.A. Yurmazov(1), E.A. Usynin(1), N.A. Lushnikova(1), N.V. Tarasenko(3, 2), I.V. Kondakova(1) 1-Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Kooperativny street, 5, Tomsk, 634050, Russian Federation; 2-Siberian State Medical University, Moskovsky trakt, 2, Tomsk, 634050, Russian Federation; 3-Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences Tomsk, Embankment of the Ushayka River, 10, Tomsk, 634050, Russian Federation Е-mail: [email protected]

The review presents data on the role of the nuclear factor NF-κB and the von Hippel-Lindau protein (VHL) in the development of kidney cancer. Chemo- and radioresistance, specific for renal cell carcinoma, represented a significant problem in the treatment of patients. The discovery of the key mechanism of tumor progression was a significant breakthrough for this disease, where surgical approaches prevailed for a long time. The majority of renal cell carcinoma cases is known to be are associated with germ or somatic mutations of the VHL protein, realized through overexpression of the nuclear hypoxia-induced factor (HIF-1) and hyperproduction of vascular endothelial growth factor (VEGF). However, the use of targeted drugs blocking key molecules associated with the angiogenesis fails to increase the number of objective responses in patients. In addition, the role of inflammatory reactions and, in particular, their key mediator, NF-κB, in the oncogenesis of kidney cancer has already been proven. Thus, the concept of a tumor molecular portrait has emerged, which is largely mediated by the production of a number of oncoproteins and oncosuppressors, activating nuclear factors NF-κB and HIF-1. In the development of kidney cancer, the VHL protein is crucial due to the capacity of triggering a cascade of molecular reactions associated with the neoangiogenesis, as well as the regulation of inflammatory responses. Consequently, the determination of the biological features of the tumor is significant in creating the optimal approaches for the personalized treatment of kidney cancer patients.
Keywords: 
kidney cancer, von Hippel–Lindau protein (VHL), NF-κB, HIF-1

Список литературы: 
  1. Спирина Л.В., Усынин Е.А., Кондакова И.В., Юрмазов З.А., Слонимская Е.М. Влияние таргетной терапии на содержание транскрипционных, ростовых факторов, протеинкиназы TOR и активности внутриклеточных протеиназ у больных диссеминированным раком почки. Бюллетень экспериментальной биологии и медицины. 2015; 160 (12): 768–72. [Spirina L.V., Usynin E.A., Kondakova I.V., Yurmazov Z.A., Slonimskaya E.M. Effect of Target Therapy on the Content of Transcription and Growth Factors, Protein Kinase TOR, and Activity of Intracellular Proteases in Patients with Metastatic Renal Cell Carcinoma. Bulletin of Experimental Biology and Medicine. 2015; 160 (12): 768–72 https://doi.org/10.1007/s10517-016-3313-6 (in Russian)]
  2. 2. Спирина Л.В., Кондакова И.В., Усынин Е.А., Юрмазов З.А. Регуляция экспрессии транскрипционных факторов и фактора роста эндотелия протеасомной системой при метастазировании рака почки. Вестник РОНЦ им. Н. Н. Блохина РАМН. 2012; 23 (1): 27–32. [Spirina L.V., Kondakova I.V., Usynin E.A., Yurmazov Z.A. Regulation of expression of transcription factors and endothelial growth factor by the proteasome system during metastasis of kidney cancer. Vestnik RONC im. N. N. Blohina RAMN. 2012; 23 (1): 27–32 (in Russian)]
  3. 3. Cho D.C., Mier J.W. Dual inhibition of PI3-kinase and mTOR in renal cell carcinoma. Curr Cancer Drug Targets. 2013; 13 (2): 126–42.
  4. 4. Спирина Л.В., Кондакова И.В., Усынин Е.А., Коломиец Л.А., Винтизенко С.И., Бочкарева Н.В., Чернышова А.Л. Активность протеасом и содержание ростовых факторов при раке почки, мочевого пузыря и эндометрия. Российский онкологический журнал. 2010; 1: 23–5. [Spirina L.V., Kondakova I.V., Usynin E.A., Kolomiec L.A., Vintizenko S.I., Bochkareva N.V., Chernyshova A.L. Proteasome activity and the content of growth factors in cancer of the kidney, bladder and endometrium. Russian Journal of Oncology. 2010; 1: 23–5 (in Russian)]
  5. 5. Iwai K., Yamanaka K., Kamura T., Minato N., Conaway R.C., Conaway J.W., Klausner R.D., Pause A. Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA. 1999; 96 (22): 12436–41.
  6. 6. Kroeger N., Seligson D.B., Signoretti S., Yu H., Magyar C.E., Huang J., Belldegrun A.S., Pantuck A.J. Poor prognosis and advanced clinicopathological features of clear cell renal cell carcinoma (ccRCC) are associated with cytoplasmic subcellular localisation of Hypoxia inducible factor-2α. Eur. J. Cancer. 2014; 50 (8): 1531–40. https://doi.org/10.1016/j.ejca.2014.01.031
  7. 7. Shen C., Kaelin W.G. Jr. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2012; 23 (1): 18–25. https://doi.org/10.1016/j.semcancer.2012.06.001
  8. 8. Zhao Z., Chen C., Lin J., Zeng W., Zhao J., Liang Y., Tan Q., Yang C., Li H.Synergy between von Hippel-Lindau and P53 contributes to chemosensitivity of clear cell renal cell carcinoma. Mol. Med. Rep. 2016; 14 (3): 2785–90. https://doi.org/10.3892/mmr.2016.5561
  9. 9. Razafinjatovo C.F., Stiehl D., Deininger E., Rechsteiner M., Moch H., Schraml P.VHL missense mutations in the p53 binding domain show different effects on p53 signaling and HIFα degradation in clear cell renal cell carcinoma. Oncotarget. 2017; 8 (6): 10199–212. https://doi.org/10.18632/oncotarget.14372
  10. 10. Menke J., Kriegsmann J., Schimanski C.C., Schwartz M.M., Schwarting A., Kelley V.R. Autocrine CSF-1 and CSF-1 receptor coexpression promotes renal cell carcinoma growth. Cancer Res. 2012; 72 (1): 187–200. https://doi.org/10.1158/0008-5472
  11. 11. Meléndez-Rodriguez F., Roche O., Sanchez-Prieto R., Aragones J. Hypoxia-Inducible Factor 2-Dependent Pathways Driving Von Hippel-Lindau-Deficient Renal Cancer. Front Oncol. 2018; 8: 214. https://doi.org/10.3389/fonc.2018.00214
  12. 12. De Vivar Chevez A.R., Finke J., Bukowski R. The role of inflammation in kidney cancer. Adv Exp. Med. Biol. 2014; 816: 197–234. https://doi.org/10.1007/978-3-0348-0837-8_9.
  13. 13. Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010; 49 (11): 1603–16. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  14. 14. Fitzgerald J.P., Nayak B., Shanmugasundaram K., Friedrichs W., Sudarshan S., Eid A.A., DeNapoli T., Parekh D.J., Gorin Y., Block K. Nox4 mediates renal cell carcinoma cell invasion through hypoxia-induced interleukin 6- and 8-production. PLoS ONE. 2012; 7 (1): e30712. https://doi.org/10.1371/journal.pone.0030712
  15. 15. Kaelin W.G. Jr. Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein. Cancer. 2009; 15 (115 (10 Suppl)): 2262–72. https://doi.org/10.1002/cncr.24232
  16. 16. Jöhrer K., Zelle-Rieser C., Perathoner A., Moser P., Hager M., Ramoner R., Gander H., Höltl L., Bartsch G., Greil R., Thurnher M. Up-regulation of functional chemokine receptor CCR3 in human renal cell carcinoma. Clin Cancer Res. 2005; 11 (7): 2459–65. https://doi.org/10.1158/1078-0432.CCR-04-0405
  17. 17. Xia Y., Shen S., Verma I.M. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014; 2 (9): 823–30. https://doi.org/10.1158/2326-6066.CIR-14-0112
  18. 18. Al-Sadi R., Guo S., Ye D., Rawat M., Ma T.Y. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-κB Pathway. Am. J. Pathol. 2016; 186 (5): 1151–65. https://doi.org/10.1016/j.ajpath.2015.12.016
  19. 19. Gupta S.C., Sundaram C., Reuter S., Aggarwal B.B. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010; 1799 (10–12): 775–87. https://doi.org/10.1016/j.bbagrm.2010.05.004
  20. 20. D’Ignazio L., Batie M., Rocha S. Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines. 2017; 5 (2): 21. https://doi.org/10.3390/biomedicines5020021
  21. 21. Safa A.R. c-FLIP, a master anti-apoptotic regulator. Exp Oncol. 2012; 34 (3): 176–84.
  22. 22. Zhang H., Sun S.C. NF-κB in inflammation and renal diseases Cell Biosci. 2015; 5: 63. https://doi.org/10.1186/s13578-015-0056-4
  23. 23. Kim H.D., Yu S.J., Kim H.S., Kim Y.J., Choe J.M., Park Y.G., Kim J., Sohn J. Interleukin-4 induces senescence in human renal carcinoma cell lines through STAT6 and p38 MAPK. J. Biol. Chem. 2013; 288 (40): 28743–54. https://doi.org/10.1074/jbc.M113.499053
  24. 24. Linehan W.M., Ricketts C.J. The metabolic basis of kidney cancer. Semin Cancer Biol. 2012; 23 (1): 46–55. https://doi.org/10.1016/j.semcancer.2012.06.002
  25. 25. An H., Xu L., Zhu Y., Lv T., Liu W., Liu Y., Liu H., Chen L., Xu J., Lin Z. High CXC chemokine receptor 4 expression is an adverse prognostic factor in patients with clear-cell renal cell carcinoma. Br. J. Cancer. 2014; 110 (9): 2261–8. https://doi.org/10.1038/bjc.2014.179
  26. 26. Labrousse-Arias D., Martinez-Alonso E., Corral-Escariz M., Bienes-Martinez R., Berridy J., Serrano-Oviedo L., Conde E., Garcia-Bermejo M.L., Giménez-Bachs J.M., Salinas-Sánchez A.S., Sánchez-Prieto R., Yao M., Lasa M., Calzada M.J. VHL promotes immune response against renal cell carcinoma via NF-κB-dependent regulation of VCAM-1. J. Cell. Biol. 2017; 216 (3): 835–47. https://doi.org/10.1083/jcb.201608024
  27. 27. Asgarova A., Asgarov K., Godet Y., Peixoto P., Nadaradjane A., Boyer-Guittaut M., Galaine J., Guenat D., Mougey V., Perrard J., Pallandre J.R., Bouard A., Balland J., Tirole C., Adotevi O., Hendrick E., Herfs M., Cartron P.F., Borg C., Hervouet E. PD-L1 expression is regulated by both DNA methylation and NF-kB during EMT signaling in non-small cell lung carcinoma. Oncoimmunology. 2018; 7 (5): e1423170. https://doi.org/10.1080/2162402X.2017.1423170.
  28. 28. Bally A.P., Lu P., Tang Y., Austin J.W., Scharer C.D., Ahmed R., Boss J.M. NF-κB regulates PD-1 expression in macrophages. J. Immunol. 2015; 194 (9): 4545–54. https://doi.org/10.4049/jimmunol.1402550
  29. 29. Makhov P., Naito S., Haifler M., Kutikov A., Boumber Y., Uzzo R.G., Kolenko V.M. The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 2018; 9 (3): 374. https://doi.org/10.1038/s41419-018-0388-1