COMPARATIVE EVALUATION OF THE EFFICIENCY OF THE IMPACT OF AQUASHINE LINE PREPARATIONS ON SKIN FIBROBLASTS UNDER AGING IN VITRO (CELL-MOLECULAR RESEARCH)

DOI: https://doi.org/10.29296/24999490-2019-03-07

V.O. Polyakova(1, 2), Z.I. Gazitaeva(3, 4), T.S. Kleimenova(1, 5), A.O. Drobintseva(1, 5), A.Yu. Prokopov(6), I.M. Kvetnoy(1, 2) 1-Ott Research Institute of Obstetrics, Gynecology, and Reproductology, Mendeleev line, 3b, St. Petersburg, 199034, Russian Federation; 2-St. Petersburg State University, Universitetskaya Emb., 7/9, St. Petersburg, 199034, Russian Federation; 3-Institute of Beauty «Fijiе», 7th Rostovsky by-str., 11, Moscow, 119121, Russian Federation; 4-St. Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, St. Petersburg, 197110, Russian Federation; 5-St. Petersburg State Pediatric Medical University, Litovskaya Str., 2, St. Petersburg, 194100, Russian Federation; 6-ROS-Chemistry Laboratory, ul. Pervomayskaya str., 15, Yekaterinburg, 620049, Russian Federation E-mail: [email protected]

Introduction. Skin aging is a natural process that cannot be stopped. However, there are many ways to help stop premature aging of the skin and reduce the signs that have already appeared. One of them is the subcutaneous administration of preparations containing biomimetic peptides capable of interacting with growth factor receptors and providing an anti-aging clinical effect. The purpose of this study was to compare the geroprotective properties of the preparations Aquashine and Aquashine HA. Methods. To study the aging of skin fibroblasts in culture, the cell culture method was used, and immunocytochemistry and confocal microscopy were used to identify markers of aging. Results. The preparation Aquashine HA has the ability to activate proliferative processes in the skin, and, by virtue of its properties, regulates the processes of cell renewal through increased cell apoptosis. Conclusion. Aquashine HA has a more pronounced geroprotective effect compared to Aquashine.
Keywords: 
biomimetic peptides, skin aging, collagen, reparative processes, sirtuin-1

Список литературы: 
  1. Иммуногистохимические методы: руководство. Пер. с англ. под ред. Г.А. Франка и П.Г. Малькова. М., 2011; 224. [Immunohistocemical methods: tutorial. Per. s angl. pod red. G.А. Franka i P.G. Mal’kova. M., 2011; 224 (in Russian)]
  2. 2. Рогова Л. Н., Шестернина Н. В., Замечник Т. В., Фастова И. А. Матриксные металлопротеиназы, их роль в физиологических и патологических процессах. Вестник новых медицинских технологий. 2011; 86–9. [Rogova L. N., SHesternina N. V., Zamechnik T. V., Fastova I. А. Role of matrix metalloproteinases in physiological and pathological processes. Vestnik novykh meditsinskikh tekhnologij. 2011; 86–9 (in Russian)]
  3. 3. Anastasiou D., Krek, W. SIRT1: Linking Adaptive Cellular Responses to Aging-Associated Changes in Organismal Physiology. Physiology. 2006; 21: 404–10.
  4. 4. Sharma U., Carrique L., Vadon-Le Goff S., Mariano N., R-N. Georges. Structural basis of homo- and heterotrimerization of collagen I. Nat Commun. 2017; 8: 14671.
  5. 5. Tilstra J.S., Clauson C.L., Niedernhofer L.J. NF-kB in Aging and Disease. Aging and Disease. 2011; 2 (6): 449–65.
  6. 6. Маркелова Е.В., Здор В.В., Романчук А. Л., Бирко О.Н. Матриксные металлопротеиназы их взаимосвязь с системой цитокинов, диагностический и прогностический потенциал. Иммунопатология. 2016; 2: 11–22. [Markelova E.V., Zdor V.V., Romanchuk А. L., Birko O.N. Interaction of matrix metalloproteinases with cytokines? diagnostical and prognostical value. Immunopatologiya. 2016; 2: 11–22 (in Russian)]
  7. 7. Соловьева Н.И. Матриксные металлопротеиназы и их биологические функции. Биоорганическая химия. 1998; 4: 245–55. [Solov’eva N. I. Biological function of matrix metalloproteinases. Bioorganicheskaya khimiya. 1998; 4: 245–55 (in Russian)]
  8. 8. Ярмолинская М. И, Молотков А. С., Денисова В. М. Матриксные металлопротеиназы и ингибиторы: классификация, механизм действия. Ж. акуш. и жен. болезн. 2012; 1: 113–25. [Yarmolinskaya M.I, Molotkov А.S., Denisova V.M. matrix metalloproteinases and inhibitors: classification and mechanism of action. ZH. akush. i zhen. bolezn. 2012; 1: 113–25 (in Russian)]
  9. 9. Franzke C.W., Bruckner P., Bruckner-Tuderman L. Collagenous transmembrane proteins: recent insights into biology and pathology. J. Biol. Chem. 2005; 280 (6): 4005–8.
  10. 10. Carneiro N.S., Armada L., Pereira D.L., Vargas P.A., Lopes M.A., Pires F.R. Evaluation of KGF, EGF, VEGF, bcl-2, IL-6 and ki67 expression in oral epithelium adjacent to bisphosphonate-related osteonecrosis and florid osseous dysplasia: a comparative immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017; 124 (6): 548–53.
  11. 11. Yerushalmi R., Woods R., Ravdin P.M. Ki-67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010; 11 (2): 174–83.
  12. 12. Michishita E., Park J.Y., Burneskis J.M., Barrett J.C., Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 2005; 16: 4623–35.
  13. 13. Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011; 332 (6036): 1443–6.
  14. 14. Moynihan K.A., Grimm A.A., Plueger M.M., Bernal-Mizrachi E., Cras-Méneur E., Permutt M. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. 2005; 2 (2): 105–17.
  15. 15. Газитаева З.А., Дробинцева А.О, Чанг Й., Полякова В.О., Кветной И.М. Молекулярные механизмы дермального геропротективного действия препаратов на основе биомиметических пептидов. Молекулярная медицина. 2015; 5: 16–9. [Gazitaeva Z.А., Drobintseva А.O, CHang J., Polyakova V.O., Kvetnoj I.M. Molecular mecanisms dermal geroprotector action preparations consisting of biomimetical peptides. Molekulyarnaya meditsina. 2015; 5: 16–9 (in Russian)]