BSMI POLYMORPHISM (283G>A) VDR GENE AND PHOSPHORUS-CALCIUM EXCHANGE PARAMETERS

DOI: https://doi.org/10.29296/24999490-2019-03-11

S.I. Malyavskaya, G.N. Kostrova, A.V. Lebedev Northern State Medical University, Troitskiy pr, 51, Arkhangelsk, 163000, Russian Federation E-mail: [email protected]

Introduction. Vitamin D is one of the main regulators of phosphorus-calcium metabolism. Vitamin D availability is determined by both external and genetic factors. The genetic contribution to the 25 (OH) D level is estimated to range from 23 to 77%. According to the literature, one of the candidate genes responsible for the efficiency of the endocrine system of vitamin D in the body is the gene encoding the vitamin D receptor (VDR), through which vitamin D realizes his functions. One of the most significant polymorphisms of the VDR gene is BSMI (283G>A). The aim of the study is to evaluate the effect of the BSMI VDR polymorphism on the level of 25 (OH) D and the parameters of calcium-phosphorus metabolism. Methods. A cross-sectional clinical and laboratory study included 124 persons (31 men (27,6%), 93 women (72,4%)). The sample age was of 18,44±0,25 years. During the study, the participants analyzed the level of 25 (OH) D, party hormone, total calcium, phosphorus, alkaline phosphatase, and the BSMI polymorphism of the VDR gene was determined. Results. In the total sample, the prevalence of genotypes of the VDR gene was: AA – 7%, GA – 41%, GG – 52%. The frequency of an occurrence of the A allele was 27,4%, and that of the G allele –72,6%. The analysis did not reveal statistically significant differences in indices of phosphorus-calcium metabolism in carriers of different genotypes. There were no statistically significant differences between the distribution of genotypes in the presence and absence of vitamin D deficiency, as well as the influence of the genotype on the level of parathyroid hormone. Conclusion. The results indicate the need to continue research on the role of genetic factors in the regulation of calcium-phosphorus metabolism, taking into account environmental influences.
Keywords: 
BSMI c.IVS7+283G>A polymorphism of the VDR gene, vitamin D, 25 (OH) D, parathormone, calcium, phosphorus

Список литературы: 
  1. Holick M.F. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin. Proc. 2006; 81: 353–73.
  2. 2. Sempos C.T., Heijboer A.C., Bikle D.D., Bollerslev J., Bouillon R., Brannon P.M., DeLuca H.F., Jones G., Munns C.F., Bilezikian J.P., Giustina A., Binkley N. Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. Br. J. Clin. Pharmacol. 2018; 84 (10): 2194–207. https://doi.org/10.1111/bcp.13652.
  3. 3. Kheiri B., Abdalla A., Osman M., Ahmed S., Hassan M., Bachuwa G. Vitamin D deficiency and risk of cardiovascular diseases: a narrative review. Clin. Hypertens. 2018; 24: 9. https://doi.org/10.1186/s40885-018-0094-4.
  4. 4. Pike J.W., Christakos S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. North Am. 2017; 46 (4): 815–43. https://doi.org/10.1016/j.ecl.2017.07.001.
  5. 5. Engelman C.D., Meyers K.J., Iyengar S.K., Liu Z., Karki C.K., Igo R.P. Jr, Truitt B., Robinson J., Sarto G.E., Wallace R., Blodi B.A., Klein M.L., Tinker L., LeBlanc E.S., Jackson R.D., Song Y., Manson J.E., Mares J.A., Millen A.E. Vitamin D intake and season modify the effects of the GC and CYP2R1 genes on 25-hydroxyvitamin D concentrations. J. Nutr. 2013; 143 (1): 17–26. https://doi.org/10.3945/jn.112.169482
  6. 6. Choi S., Ko H., Lee K., Sung J., Song Y.M. Genetic influence on serum 25-hydroxyvitamin D concentration in Korean men: a cross-sectional study. Genes. Nutr. 2018; 13: 33. https://doi.org/10.1186/s12263-018-0621-7.
  7. 7. Dastani Z., Li R., Richards B. Genetic regulation of vitamin D levels. Calcif. Tissue Int. 2013; 92 (2): 106–17. https://doi.org/10.1007/s00223-012-9660-z.
  8. 8. Abouzid M., Karazniewicz-Lada M., Glowka F. Genetic Determinants of Vitamin D-Related Disorders; Focus on Vitamin D Receptor. Curr. Drug Metab. 2018; 19 (12): 1042–52. https://doi.org/10.2174/1389200219666180723143552.
  9. 9. Zhang L., Yin X., Wang J., Xu D., Wang Y., Yang J., Tao Y., Zhang S., Feng X., Yan C. Associations between VDR Gene Polymorphisms and Osteoporosis Risk and Bone Mineral Density in Postmenopausal Women: A systematic review and Meta-Analysis. Sci. Rep. 2018; 8 (1): 981. https://doi.org/10.1038/s41598-017-18670-7.
  10. 10. Yu M., Chen GQ., Yu F. Nov Lack of association between vitamin D receptor polymorphisms ApaI (rs7975232) and BsmI(rs1544410) and osteoporosis among the Han Chinese population: A meta-analysis. Kaohsiung J. Med. Sci. 2016; 32 (12): 599–606. https://doi.org/10.1016/j.kjms.2016.10.002.
  11. 11. Майлян Э.А. Ассоциация полиморфизма 283 А>G гена рецептора витамина D с остеопорозом у женщин в зависимости от длительности менопаузы. Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация. 2017; 261 (12). 12–21. [Maylyan E.A. Associations between 283 A>G (BSMI) polymorphism of vitamin D receptor gene and osteoporosis in women depending on menopause duration. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Medicina. Farmaciya. 2017; 261 (12). 12–21 (in Russian)]
  12. 12. Козлов А.И., Вершубская Г.Г., Негашева М.А. Связь относительного содержания костной ткани с полиморфизмом гена рецептора витамина D. Физиология человека. 2017; 43 (3): 96–101. https://doi.org/10.7868/S0131164617030109 [Kozlov A.I., Vershubskaya G.G., Negasheva M.A. Association of Relative Bone Mass with the Polymorphism of Vitamin D Receptor Gene. Fiziologiya cheloveka. 2017; 43 (3): 96–101. https://doi.org/10.7868/S0131164617030109 (in Russian)]
  13. 13. Mohammadi Z., Fayyazbakhsh F., Ebrahimi M., Amoli M.M., Khashayar P., Dini M., Zadeh R.N., Keshtkar A., Barikani H.R. Association between vitamin D receptor gene polymorphisms (Fok1 and Bsm1) and osteoporosis: a systematic review. J. Diabetes Metab. Disord. 2014; 13 (1): 98. https://doi.org/10.1186/s40200-014-0098-x.
  14. 14. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., Gordon C.M., Hanley D.A., Heaney R.P., Murad M.H., Weaver C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011; 96 (7): 1911–30.
  15. 15. Online Encyclopedia for Genetic Epidemiology studies. Hardy Weinberg equilibrium calculator [Internet]. [cited 2018 Dec 12]. Available from: http://www.oege.org/software/hwe-mr-calc.shtml
  16. 16. Потолицына Н.Н., Бойко Е.Р. Витаминный статус жителей Европейского Севера России и его зависимость от географической широты. Журнал медико-биологических исследований. 2018; 6 (4): 376–86. https://doi.org/10.17238/issn2542-1298.2018.6.4.376 [Potolitsyna N.N., Boyko E.R. Vitamin status in residents of the European North of Russia and its correlation with geographical latitude. J. of Medical and Biological Research. 2018; 6 (4): 376–86. https://doi.org/10.17238/issn2542-1298.2018.6.4.376 (in Russian)]
  17. 17. Каронова Т.Л., Гринева Е.Н., Никитина И.Л., Цветкова Е.В., Тодиева А.М., Беляева О.Д., Михеева Е.П., Глоба П.Ю., Андреева А.Т., Белецкая И.С., Омельчук Н.В., Фулонова Л.С., Шляхто Е.В. Распространенность дефицита витамина D в Северо-Западном регионе РФ среди жителей г. Санкт-Петербурга и г. Петрозаводска. Остеопороз и остеопатии. 2013; 16 (3): 3–7. [Karonova T.L., Grineva E.N., Nikitina I.L., Cvetkova E.V., Todieva A.M., Belyaeva O.D., Miheeva E.P., Globa P.YU., Andreeva A.T., Beleckaya I.S., Omel’chuk N.V., Fulonova L.S., SHlyahto E.V. Rasprostranennost’ deficita vitamina D v Severo-Zapadnom regione RF sredi zhitelej g. Sankt-Peterburga i g. Petrozavodska. Osteoporoz i osteopatii. 2013; 16 (3): 3–7 (in Russian)]
  18. 18. Zhang Y.F., Zhou T.B., Jiang Z.P., Li H.Y. Association of vitamin D receptor BsmI (rs1544410) gene polymorphism with the intact parathyroid hormone (iPTH) level among patients with end-stage renal disease. J. Recept. Signal Transduct. Res. 2015; 35: 133–6.