GENE POLYMORPHISM IN TOLL-LIKE RECEPTOR AND ASSOCIATED DISEASES

DOI: https://doi.org/10.29296/24999490-2019-06-02

K.A. Dvornikova, E.Yu. Bystrova, O.N. Platonova, A.D. Nozdrachev I.P. Pavlov Institute of Physiology, RAS, Makarova Emb., 6, Saint-Petersburg, 199034, Russian Federation E-mail: [email protected]

Introduction. In recent years, there have been aroused and actively studied mutations associated with Toll-like receptor genes (TLRs). The emerging interest is related to the identification of many associations between the TLRs polymorphism and the development of pathological conditions. Single nucleotide polymorphism (SNP) is a variant of point mutation. If two sequences in DNA differ by one nucleotide, then two alleles appear. As a result of single nucleotide polymorphisms in TLRs, the functioning of some key signaling pathways is impaired which in turn increases the risk of developing autoimmune, oncological and cardiovascular diseases. The aim of the study. The present study is devoted both to examining the current state of the problem, and, in particular, summarizing the information presented in the literature about the role of TLRs polymorphism in the occurrence of a number of diseases of the digestive system. Results. The analysis of studies on the nature of SNPs and their role in the body allowed establishing some functional consequences of polymorphisms in TLRs. The relationship of SNPs with susceptibility to infectious and inflammatory diseases of the gastrointestinal tract in some cases has been established clinically. A significant number of studies are devoted to identifying associations of SNPs of Toll-like receptors with the occurrence of malignant tumors. Conclusion. At present, it has not yet been possible to determine the exact mechanism of the inflammatory response leading to cancer, however, the data indicate the involvement of TLRs in the inflammatory response and the possibility of its modification through SNPs, which, in turn, may alter the course of the tumor process. One can hope further research in this area to provide more information about the effects of SNPs on genes in order to predict and prevent diseases based on genomic risk markers, as well as to help to identify new ways in the diagnosis and treatment of cancer using gene therapy.
Keywords: 
gene polymorphism, mutations, Toll-like receptors (TLRs), single nucleotide polymorphism (SNP), digestive system, carcinogenesis

Список литературы: 
  1. Hold G.L., Berry S., Saunders K.A. et al. The TLR4 D299G and T399I SNPs are constitutively active to up-regulate expression of TRIF dependent genes. PLoS. ONE. 2014; 9: e111460. https://doi.org/10.1371/journal.pone.0111460
  2. Ashton K.A., Proietto A., Otton G. et al. Toll-like receptor (TLR) and nucleosome-binding oligomerization domain (NOD) gene polymorphisms and endometrial cancer risk. BMC Cancer. 2010; 10: 382. https://doi.org/10.1186/1471-2407-10-382
  3. Trejo-de la O., Hernandez-Sancen P., Maldonado-Bernal C. Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer. Genes and Immunity. 2014; 15: 199–209. https://doi.org/10.1038/gene.2014.10
  4. El-Omar E.M., Hold G.L. Polymorphisms in Toll-like receptor genes and risk of cancer. Oncogene. 2008; 27: 244–52. https://doi.org/10.1038/sj.onc.1210912
  5. Medvedev A.E. Toll-Like Receptor Polymorphisms, Inflammatory and Infectious Diseases, Allergies, and Cancer. Journal of Interferon & Cytokine Research. 2013; 33 (9): 467–84. https://doi.org/10.1089/jir.2012.0140
  6. Filippova L.V., Bystrova E.Ju., Malyshev F.S., Platonova O.N., Nozdrachev A.D. Ekspressija pattern-raspoznajuschih retseptorov notsitseptivnymi metasimpaticheskimi nejronami. Bjulleten' eksperimental'noj biologii i meditsiny. 2015; 159 (2): 209–13. [Filippova L.V., Bystrova E.Ju., Malyshev F.S., Platonova O.N., Nozdrachev A.D. Expression of pattern-recognizing receptors by nociceptive metasympathetic neurons. Bjulleten’ jeksperimental’noj biologii i mediciny. 2015; 159 (2): 209–13 (in Russian)]
  7. Filippova L.V., Malyshev F.S., Bykova A.A., Nozdrachev A.D. Ekspressija toll-podobnyh retseptorov 4 v nervnyh spletenijah dvenadtsatiperstnoj, toschej i obodochnoj kishki krysy. Doklady Akademii nauk. 2012; 445 (3): 353. [Filippova L.V., Malyshev F.S., Bykova A.A., Nozdrachev A.D. Expression of Toll-like receptors 4 in the nerve plexuses of the duodenal, jejunum and colon of the rat. Doklady Akademii nauk. 2012; 445 (3): 353 (in Russian)]
  8. Shpanskaja A.A., Platonova O.N., Bystrova E.Ju. Vlijanie ingibirovanija retseptora TLR4 na ekspressiju notsitseptivnogo retseptora TRPV1 v enteral'nyh nejronah tolstoj kishki krysy. V knige: Sovremennye aspekty integrativnoj fiziologii. Materialy Vserossijskoj molodezhnoj konferentsii s mezhdunarodnym uchastiem. Institut fiziologii im. I.P. Pavlova RAN. 2018: 120–1. [Shpanskaja A.A., Platonova O.N., Bystrova E.Ju. Effect of TLR4 receptor inhibition on expression of the nociceptive TRPV1 receptor in rat colon enteric neurons. In the book: Modern aspects of integrative physiology. Materials All-Russian youth conference with international participation. Institute of Physiology I.P. Pavlova RAN. 2018: 120–1 (in Russian)]
  9. Berezhnaja N.M. Toll-like retseptory i onkogenez. Onkologija. 2013; 15 (2): 76–87. [Berezhnaja N.M. Toll-like receptors and oncogenesis. Oncology. 2013; 15 (2): 76–87 (in Russian)]
  10. Chuang T., Ulevitch R.J. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim. Biophys. Acta. 2001; 1518: 157–61. https://doi.org/10.1016/S0167-4781(00)00289-X.
  11. Du X., Poltorak A., Wei Y., Beutler B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Network. 2000; 11: 362–71.
  12. Hold G.L., Smith M.G., McLean M.H. et al. Innate immune response gene polymorphisms and their role in H-pylori-induced gastric cancer. Gastroenterology. 2006; 130 (A61).
  13. Pirie F.J., Pegoraro R., Motala A.A. et al. Toll-like receptor 3 gene polymorphisms in South African blacks with type 1 diabetes. Tissue Antigens. 2005; 66: 125–30. https://doi.org/10.1111/j.1399-0039.2005.00454.x
  14. Theodoropoulos G.E., Saridakis V., Karantanos T. et al. Toll-like receptor gene polymorphisms may confer increased susceptibility to breast cancer development. Breast. 2012; 21: 534–8. https://doi.org/10.1016/j.breast.2012.04.001
  15. Ueta M., Sotozono C., Inatomi T. et al. Toll-like receptor 3 gene polymorphisms in Japanese patients with Stevens–Johnson syndrome. Br. J. Ophthalmol. 2007; 91: 962–5. https://doi.org/10.1136/bjo.2006.113449
  16. Ponasenko A.V., Kutihin A.G., Hutornaja M.V., Juzhalin A.E., Rutkovskaja N.V., Golovkin A.S., Barbarash L.S. Svjaz' polimorfizmov genov sistemy TLR s riskom razvitija infektsionnogo endokardita. Meditsina v Kuzbasse. 2015; 4: 4–10. [Ponasenko A.V., Kutikhin A.G., Khutornaya M.V., Yuzhalin A.E., Rutkovskaya N.V., Golovkin A.S., Barbarash L.S. Polymorphisms within the genes encoding Toll-like receptors and risk of infective endocarditis. Medicine in Kuzbass (Kemerovo). 2015; 14: 4–10 (in Russian)]]
  17. Johnson C.M., Lyle E.A., Omueti K.O. et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J. Immunol. 2007; 178: 7520–4. https://doi.org/10.4049/jimmunol.178.12.7520
  18. Hawn T.R., Misch E.A., Dunstan S.J. et al. A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur. J. Immunol. 2007; 37: 2280–9. https://doi.org/10.1002/eji.200737034
  19. Franchimont D., Vermeire S., El Housni H. et al. The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004; 53: 987–92. https://doi.org/10.1136/gut.2004.051383
  20. Hold G.L., Rabkin C.S., Chow W.H. et al. A functional polymorphism of toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology. 2007; 132: 905–12. https://doi.org/10.1053/j.gastro.2006.12.026
  21. Kiechl S., Lorenz E., Reindl M. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 2002; 347: 185–92. https://doi.org/10.1056/NEJMoa012673
  22. Ohto U., Yamakawa N., Akashi-Takamura S. et al. Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I. J. Biol. Chem. 2012; 287: 40611–7. https://doi.org/10.1074/jbc.M112.404608
  23. Bochud P.Y., Hersberger M., Taffe P. et al. Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS. 2007; 21: 441–6. https://doi.org/10.1097/QAD.0b013e328012b8ac
  24. Mockenhaupt F.P., Hamann L., von Gaertner C. et al. Common polymorphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J. Infect. Dis. 2006; 194: 184–8. https://doi.org/10.1086/505152.
  25. Pandey S., Mittal B., Srivastava M. et al. Evaluation of Toll-like receptor 3 (c.1377C/T) and 9 (G2848A) gene polymorphism in cervical cancer susceptibility. Mol. Biol. Rep. 2011; 38: 4715–21. https://doi.org/10.1007/s11033-010-0607-z
  26. Su B., Ceponis P.J., Lebel S. et al. Helicobacter pylori activates Toll-like receptor 4 expression in gastrointestinal epithelial cells. Infect. Immun. 2003; 71: 3496–502. https://doi.org/10.1128/IAI.71.6.3496-3502.2003
  27. Pasare C., Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Adv. Exp. Med. Biol. 2005; 560; 11–8. https://doi.org/10.1016/j.micinf.2004.08.018
  28. Akira S., Takeda K. Toll-like receptor signaling. Nat. Rev. Immunol. 2004; 4: 499–511. https://doi.org/10.1038/nri1391
  29. Chow J.C., Young D.W., Golenbock D.T. et al. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 1999; 274: 10689–92. https://doi.org/10.1074/jbc.274.16.10689
  30. Takeda K., Akira S. Toll-like receptors in innate immunity. Int. Immunol. 2005; 17: 1–14. https://doi.org/10.1093/intimm/dxh186
  31. Hold G.L., Smith M.G., McColl K.E., El-Omar E.M. A functional Toll-like receptor 4 polymorphism increases the risk of H. pylori-induced pre-malignant changes in the stomach. Gastroenterology. 2003; 124: 18–25.
  32. Kato I., Canzian F., Plummer M. et al. Polymorphisms in genes related to bacterial lipopolysaccharide/peptidoglycan signaling and gastric precancerous lesions in a population at high risk for gastric cancer. Dig. Dis. Sci. 2007; 52: 254–61.
  33. Arbour N.C., Lorenz E., Schutte B.C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 2000; 25: 187–91. https://doi.org/10.1038/76048
  34. Lorenz E., Frees K.L., Schwartz D.A. Determination of the TLR4 genotype using allele-specific PCR. Biotechniques. 2001; 31: 22–4. https://doi.org/10.2144/01311bm01
  35. Lorenz E., Mira J.P., Frees K.L., Schwartz D.A. Relevance of mutations in the TLR4 receptor in patients with gramnegative septic shock. Arch. Intern. Med. 2002; 162: 1028–32. https://doi.org/10.1001/archinte.162.9.1028
  36. Higgins S.C., Lavelle E.C., McCann C. et al. Toll-like receptor 4-medi ated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J. Immunol. 2003; 171: 3119–27. https://doi.org/10.4049/jimmunol.171.6.3119
  37. Albiger B., Dahlberg S., Henriques-Normark B., Normark S. Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors. J. Intern. Med. 2007; 261: 511–28. https://doi.org/10.1111/j.1365-2796.2007.01821.x
  38. Peek Jr. R.M., Blaser M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer. 2002; 2: 28–37. https://doi.org/10.1038/nrc703
  39. Savage S.A., Hou L., Lissowska J. et al. Interleukin-8 Polymorphisms Are Not Associated with Gastric Cancer Risk in a Polish Population. Cancer Epidemiol. Biomarkers Prev. 2006; 15: 589–91. https://doi.org/10.1158/1055-9965.EPI-05-0887
  40. Segal E.D., Lange C., Covacci A. et al. Induction of host signal transduction pathways by Helicobacter pylori. Proc. Natl. Acad. Sci. USA. 1997; 94: 7595–9. https://doi.org/10.1073/pnas.94.14.7595
  41. Suerbaum S., Michetti P. Helicobacter pylori infection. N. Engl. J. Med. 2002; 347: 1175–86. https://doi.org/10.1056/NEJMra020542
  42. Pandey N., Chauhan A., Neeraj J. TLR4 Polymorphisms and Expression in Solid Cancers. Molecular Diagnosis & Therapy. 2018; 22: 683–702. https://doi.org/10.1007/s40291-018-0361-9
  43. Sanduleanu S., Jonkers D., De Bruine A. et al. Double gastric infection with Helicobacter pylori and non-Helicobacter pylori bacteria during acid-suppressive therapy: increase of pro-inflammatory cytokines and development of atrophic gastritis. Aliment. Pharmacol. Ther. 2001; 15: 1163–75. https://doi.org/10.1046/j.1365-2036.2001.01029.x
  44. Wu M.S., Cheng T.Y., Shun C.T. et al. Functional polymorphisms of CD14 and Toll-like receptor 4 in Taiwanese Chinese with Helicobacter pylori-related gastric malignancies. Hepato-Gastroenterology. 2006; 53: 807–10.
  45. Junjie X., Songyao J., Minmin S. et al. The association between Toll-like receptor 2 single-nucleotide polymorphism and hepatocellular carcinoma susceptibility. BMC Cancer. 2012; 12: 57. https://doi.org/10.1186/1471-2407-12-57
  46. Yang C.A., Scheibenbogen C., Bauer S. et al. A frequent Toll-like receptor 1 gene polymorphism affects NK- and T-cell INF-g production and is associated with Helicobacter pylori-induced gastric disease. Helicobacter. 2013; 18: 13–21.
  47. Omueti K.O., Mazur D.J., Thompson K.S. et al. The polymorphism P315L of human toll-like receptor 1 impairs innate immune sensing of microbial cell wall components. J. Immunol. 2007; 178: 6387–94. https://doi.org/10.4049/jimmunol.178.10.6387
  48. Sun J., Wiklund F., Zheng S.L. et al. Sequence variants in Toll-like receptor gene cluster (TLR6–TLR1–TLR10) and prostate cancer risk. J. Natl. Cancer Inst. 2005; 97: 525–32. https://doi.org/10.1093/jnci/dji070
  49. Pierik M., Joossens S., Van Steen K. et al. Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm. Bowel. Dis. 2006; 12: 1–8.