CHANGES IN THE QUANTITATIVE COMPOSITION OF NEUROGLIA IN THE PREFRONTAL CORTEX OF RATS WITH MODELED POST-TRAUMATIC STRESS DISORDER

DOI: https://doi.org/10.29296/24999490-2019-06-10

G.M. Khayrullina, I.A. Vacoliuk Immanuel Kant Baltic Federal University, A. Nevskogo str., 14, Kaliningrad, 236016, Russian Federation E-mail: [email protected]

Introduction. Neuroglia plays an important role in maintaining the stable functioning of the CNS. Of particular importance are neuroglial cells in the organization of the immune system of the brain, activating both with physical, physiological damage, and with chronic stress or other extreme, including mental, effects. The aim of the study. Characterizing the state of neuroglia in the prefrontal cortex of rats with a simulated post-traumatic stress disorder is crucial for understanding the cellular mechanisms underlying the development of pathological behavioral disorders in PTSD. Methods. Animal model of PTSD. Immunohistochemistry. Results. Significant quantitative differences in astrocytes were detected in all three zones of the medial prefrontal cortex in experimental and control animals, namely: a decrease in the number of astrocytic cells and their density in the first group (p
Keywords: 
neuroglia, astrocytes, prefrontal cortex, posttraumatic stress disorder, animal model, immunohistochemistry

Список литературы: 
  1. Raivich G., Bohatschek M., Kloss C.UA, Werner A., Jones L.L., Kreutzberg G.W. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain res rev. 1999; 30 (1): 77–105.
  2. Malinovskaja N.A., Prokopenko S.V., Komleva Ju.K., Panina Ju.A. Molekuly-markery aktivatsii glii pri nejrovospalenii: novye vozmozhnosti farmakoterapii i nejrodegeneratsii. Sibirskoe meditsinskoe obozrenie. 2014; 5: 5–15. [Malinovskaja N.A., Prokopenko S.V., KomlevaJu.K., PaninaJu.A. Molecules markers of glia activation in neuroinflammation: new possibilities of pharmacotherapy and neurodegeneration. Siberian medical review. 2014; 5: 5–15 (in Russian)]
  3. Malinovskaja N.A., Frolova O.V., Panina Ju.A., Gasymly E.D., Pisareva N.V., Prokopenko S.V., Salmina A.B. Pro- i antivospalitel'nyj fenotip kletok mikroglii i astroglii pri nejrodegeneratsii. Tsitokiny i vospalenie. 2017; 1: 20–6. [Malinovskaja N.A., Frolova O.V., Panina Ju.A., Gasimli E.D., Pisareva N.V., Prokopenko N.V., Prokopenko S.V. Pro- and anti-inflammatory phenotype of microglia and astroglia cells in neurodegeneration. Cytokines and inflammation. 2017; 1: 20–6 (in Russian)]
  4. Chernyh E.R., Shevela E.Ja., Ostanin A.A. Rol' makrofagov v vosstanovlenii povrezhdenij tsentral'noj nervnoj sistemy: novye vozmozhnosti v lechenii nevrologicheskih rasstrojstv. Meditsinskaja immunologija. 2017; 1: 7–18. [Chernyh E.R., Shevela E.Ja., Ostanin A.A. The role of macrophages in restoring damage to the central nervous system: new opportunities in the treatment of neurological disorders. Medical immunology. 2017; 1: 7–18 (in Russian)]
  5. Pascual O., Achour S., Rostaing P., Triller A., Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109 (4): 197–205 https://doi.org/ 10.1073/pnas.1111098109
  6. Reus G.Z., Fries G.R., Stertz L., Badawy M., Passos I.C., Barichello T., Kapczinski F., Quevedo J. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015; 300: 141–54 https://doi.org/ 10.1016/j.neuroscience.2015.05.018
  7. Monastyrskaja E.A., Ljamina S.V., Malyshev I.Ju. M1 iM2 fenotipy aktivirovannyh makrofagov i ih rol' v immunnom otvete i patologii. Patogenez. 2008; 4: 31–9. [Monastyrskaja E.A., Ljamina S.V., Malyshev I.Ju. M1 and M2 phenotypes of activated macrophages and their role in the immune response and pathology. Pathogenesis. 2008; 4: 31–9 (in Russian)]
  8. Tang Y., Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular neurobiology. 2016; 53 (2): 1181–94 https://doi.org/ 10.1007/s12035-014-9070-5
  9. Murphy-Royal C., Gordon G.R., Bains J.S. Stress-induced structural and functional modifications of astrocytes.Further implicating glia in the central response to stress. Glia. 2019; 19 https://doi.org/ 10.1002/glia.23610
  10. Sriram K.O., O’Callaghan J.P. Divergent roles for tumor necrosis factor-alpha in the brain. J. Neuroimmune Pharmacology. 2007; 2 (2): 140–53 https://doi.org/10.1007/s11481-007-9070-6
  11. Katzman A., Alberini C.M. NLGN1 and NLGN2 in the prefrontal cortex their role in memory consolidation and strengthening. Current opinion neurobiology. 2018; 48: 122–30 https://doi.org/10.1016/j.conb.2017.12.003
  12. Wohleb E.S. Neuron-Microglia interactions in mental health disorders. Frontiers in immunology. 2016; 7: 544 https://doi.org/10.3389/fimmu.2016.00544
  13. Grunfeld I.S., Likhtik E. Mixed selectivity encoding and action selection in the prefrontal cortex during threat assessment. Current opinion in neurobiology. 2018; 49: 108–15 https://doi.org/10.1016/j.conb.2018.01.008
  14. Puig M.V., Gulledge A.T. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Molecular Neurobiology. 2011; 44 (3): 449–64 https://doi.org/ 10.1007/s12035-011-8214-0
  15. Xu N., Tang X.N., Pan W., Xie Z.M., Zhang G.F., Ji M.H., Yang J.J., Zhou M.T., Zhou Z.Q..Spared Nerve Injury Increases the Expression of Microglia M1 Markers in the Prefrontal Cortex of Rats and Provokes Depression-Like Behaviors. Frontiers in neuroscience. 2017; 11: 209 https://doi.org/ 10.3389/fnins.2017.00209
  16. Christoffel D.J., Golden S.A., Russo S.J. Structural and synaptic plasticity in stress-related disorders. Reviews in the neurosciences. 2011; 22 (5): 535–49. https://doi.org/10.1515/RNS.2011.044
  17. Kim Y. K., Amidfar M., Won E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in PTSD. Progress in Neuro-psychopharmacology and biological Psychiatry. 2018; 91: 103–12 https://doi.org/10.1016/j.pnpbp.2018.06.008
  18. Henneberger C., Bard L., Panatier A., Reynolds J. P., Medvedev N. I. Minge D., Herde M.K. , Anders S., Kraev I., Zheng K., Jensen T., Sanchez-Romero I., Janovjak H., Ottersen O-P., Nagelhus E-A, Oliet S., Stewart M., Nägerl U.V., Rusakov D.A.. Astroglia withdraw from potentiated synapses boosting inter-synaptic cross-talk. bioRxiv. 2018 https://doi.org/10.1101/349233
  19. Deslauriers J., Toth M., Der-Avakian A., Risbrough V.B. Current status of animal models of PTSD: behavioural phenotypes and future challenges in improving translation. Biological psychiatry. 2018; 83 (10): 895–907 https://doi.org/10.1016/j.biopsych.2017.11.019
  20. Kim S, Hwang Y, Webster MJ, Lee D. Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Molecularpsychiatry. 2016; 21 (3): 376–85 https://doi.org/10.1038/mp.2015.79