THE ROLE OF SWI/SNF CHROMATIN REMODELER COMPOSITION IN SENSITIVITY TO GSK126 AND ABT263

DOI: https://doi.org/10.29296/24999490-2020-01-06

N.R. Fatkhutdinov(1, 2), R. Zhang(2), R.G. Kiyamova(3) 1-Kazan Federal University, Kremlevskaya st., 18, Kazan, 420008, Russian Federation; 2-The Wistar Institute, Philadelphia, USA, PA 19104, 3601 Spruce st. 3-Research Laboratory «Biomarker», Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology of Kazan Federal University, Kremlevskaya st., 18, Kazan, 420008, Russian Federation E-mail: [email protected]

Introduction. Ovarian clear cell carcinoma (OCCC) is a subtype of epithelial ovarian cancer characterized by frequent mutations in the ARID1A gene and low sensitivity to standard-of-care chemotherapeutic agents. The aim of the study. To determine the role of ARID1A in sensitivity of OCCCs to GSK126 and ABT263 Methods. ARID1A-mutant OCCC cell lines were used as study models. The effects of EZH2 and BCL2 inhibition on cellular proliferation were determined by 3D-colony formation assay using Matrigel. Lentiviral particles carrying pLX304-ARID1A vector were used for ARID1A restoration. Results. ARID1A-mutant OCCC cells are susceptible to EZH2 and BCL2 inhibition. Combination of ABT263 and GSK126 further decreases cellular proliferation. Sensitivity to aforementioned targeted therapies is dependent on ARID1A expression: restoration of wild type ARID1A in ARID1A-mutant OCCCs leads to the decrease in efficacy of EZH2 and BCL2 inhibitors. Conclusion. ARID1A is a key factor determining sensitivity of OCCCs to GSK126 and ABT263.
Keywords: 
ovarian cancer, ARID1A, SWI/SNF, EZH2, epigenetics, apoptosis

Список литературы: 
  1. Reid B.M., Permuth J.B., Sellers T.A. Epidemiology of ovarian cancer: a review. Cancer biology & medicine. 2017; 1 (14): 9–32. https://doi.org/10.20892/j.issn.2095-3941.2016.0084
  2. Nagase S., Ohta T., Takahashi F., Enomoto T. Annual report of the committee on gynecologic oncology, the Japan Society of Obstetrics and Gynecology: Annual patients report for 2015 and annual treatment report for 2010. Journal of Obstetrics and Gynaecology Research. 2018; 45 (2). https://doi.org/10.1111/jog.13863
  3. Wiegand K.C., Shah S.P., Al-Agha O.M., Zhao Y., Tse K., Zeng T., Senz J., McConechy M.K., Anglesio M.S., Kalloger S.E., Yang W., Heravi-Moussavi A., Giuliany R., Chow C., Fee J., Zayed A., Prentice L., Melnyk N., Turashvili G., Delaney A.D., Madore J., Yip S., McPherson A.W., Ha G., Bell L., Fereday S., Tam A., Galletta L., Tonin P.N., Provencher D., Miller D., Jones S.J.M., Moore R.A., Morin G.B., Oloumi A., Boyd N., Aparicio S.A., Shih I.-M., Mes-Masson A.-M., Bowtell D.D., Hirst M., Gilks B., Marra M.A., Huntsman D.G. ARID1A mutations in endometriosis-associated ovarian carcinomas. The New England journal of medicine. 2010; 16 (363): 1532–43. https://doi.org/10.1056/NEJMoa1008433
  4. Jones S., Wang T.-L., Shih I.-M., Mao T.-L., Nakayama K., Roden R., Glas R., Slamon D., Diaz L.A., Vogelstein B., Kinzler K.W., Velculescu V.E., Papadopoulos N. Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma. Science (New York, N.Y.). 2010; 6001 (330): 228–31. https://doi.org/10.1126/science.1196333
  5. Bitler B.G., Aird K.M., Garipov A., Li H., Amatangelo M., Kossenkov A. V, Schultz D.C., Liu Q., Shih I.-M., Conejo-Garcia J.R., Speicher D.W., Zhang R. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nature Medicine. 2015; 21: 231. https://doi.org/ 10.1038/nm.3799
  6. Kadoch C., Copeland R.A., Keilhack H. PRC2 and SWI/SNF Chromatin Remodeling Complexes in Health and Disease. Biochemistry. 2016; 11 (55): 1600–14. https://doi.org/10.1021/acs.biochem.5b01191
  7. Sugiyama T., Kamura T., Kigawa J., Terakawa N., Kikuchi Y., Kita T., Suzuki M., Sato I., Taguchi K. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer. 2000; 11 (88): 2584–9.
  8. Miyamoto M., Takano M., Iwaya K., Shinomiya N., Kato M., Aoyama T., Sasaki N., Goto T., Suzuki A., Hitrata J., Furuya K. X-chromosome-linked inhibitor of apoptosis as a key factor for chemoresistance in clear cell carcinoma of the ovary. British J. of cancer. 2014; 12 (110): 2881–6. https://doi.org/10.1038/bjc.2014.255
  9. Suzuki E., Kajita S., Takahashi H., Matsumoto T., Tsuruta T., Saegusa M. Transcriptional upregulation of HNF-1beta by NF-kappaB in ovarian clear cell carcinoma modulates susceptibility to apoptosis through alteration in bcl-2 expression. Laboratory investigation; a journal of technical methods and pathology. 2015; 8 (95): 962–72. https://doi.org/10.1038/labinvest.2015.73
  10. Anderson N.S., Turner L., Livingston S., Chen R., Nicosia S. V, Kruk P.A. Bcl-2 expression is altered with ovarian tumor progression: an immunohistochemical evaluation. J. of ovarian research. 2009; 2: 16. https://doi.org/10.1186/1757-2215-2-16
  11. Naujok O., Diekmann U., Elsner M. Gene Transfer into Pluripotent Stem Cells via Lentiviral Transduction. Methods in molecular biology (Clifton, N.J.). 2015; 1341. https://doi.org/10.1007/7651_2015_221
  12. Tse C., Shoemaker A.R., Adickes J., Anderson M.G., Chen J., Jin S., Johnson E.F., Marsh K.C., Mitten M.J., Nimmer P., Roberts L., Tahir S.K., Xiao Y., Yang X., Zhang H., Fesik S., Rosenberg S.H., Elmore S.W. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer research. 2008; 9 (68): 3421–8. https://doi.org/10.1158/0008-5472.CAN-07-5836
  13. McCabe M.T., Ott H.M., Ganji G., Korenchuk S., Thompson C., Aller G.S. Van, Liu Y., Graves A.P., Pietra A. 3rd Della, Diaz E., LaFrance L. V, Mellinger M., Duquenne C., Tian X., Kruger R.G., McHugh C.F., Brandt M., Miller W.H., Dhanak D., Verma S.K., Tummino P.J., Creasy C.L. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012; 7427 (492): 108–12. https://doi.org/10.1038/nature11606
  14. Yamada K.M., Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007; 4 (130): 601–10. https://doi.org/10.1016/j.cell.2007.08.006
  15. Klochendler-Yeivin A., Picarsky E., Yaniv M. Increased DNA Damage Sensitivity and Apoptosis in Cells Lacking the Snf5/Ini1 Subunit of the SWI/SNF Chromatin Remodeling Complex. Molecular and Cellular Biology. 2006; 7 (26): 2661–74. https://doi.org/10.1128/MCB.26.7.2661-2674.2006
  16. Park J.H., Park E.-J., Hur S.-K., Kim S., Kwon J. Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA repair. 2009; 1 (8): 29–39. https://doi.org/10.1016/j.dnarep.2008.08.011
  17. Wilson B.G., Roberts C.W.M. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011; 7 (11): 481–92. https://doi.org/10.1038/nrc3068