COLLAGEN EXCHANGE AND CONTENT OF MINERAL SUBSTANCES IN BONE TISSUE OF ANIMALS WITH EXPERIMENTAL DIABETES

DOI: https://doi.org/10.29296/24999490-2020-02-05

N.V. Savinova, O.V. Danilova, E.G. Butolin, V.A. Vyatkin Izhevsk State Medical Academy, Kommunarov St., 281, Izhevsk, the Udmurt Republic, 426034, Russian Federation E-mail: [email protected]

Introduction. The risk of bone tissue disturbance leading to a disability of diabetes mellitus patients brisks up the study of the mechanisms of diabetic osteopathy. The aim of the study. To study the indices of collagen exchange, the content of components of a mineral matrix of compact and spongy bone tissue in rats with alloxan diabetes. Methods. In the diaphysis of the femur and the body of the second lumbar vertebra of rats have been determined: the level of carboxyterminal telopeptide of collagen type I using the method of enzyme-linked immunosorbent assay (β-CrossLaps; ELISA); the amount of total collagen, as well as neutral salt-soluble collagen basing on the concentration of hydroxyproline applying in colorimetric method; the content of calcium and phosphorus using the method of atomic emission spectroscopy with inductive bind plasma. All the readings mentioned above were studied on the 7th, 14th, 21st and 28th day after injecting alloxan tetrahydrate. Results. A decrease in a quantity of neutral salt-soluble collagen was noted in the bone tissue of experimental rats, that points out the synthesis of a given biopolymer inhibition. The concentration of β-CrossLaps – the marker of collagen decay – was increasing in the tissues studied since the 14th day of the research. Total collagen content in the femur was reduced at the 21st and 28th days of the experiment, and in the vertebra during the whole period of observation. The processes of collagen catabolism activation were accompanied by diminution of calcium and phosphorus content both in the femur and vertebra. Conclusion. In the bone tissue of alloxan-induced rats, the processes of degradation prevailed. It resulted in the decrease both of total collagen content and mineral matrix components.
Keywords: 
diabetes, bone tissue, collagen, β-CrossLaps, mineral matrix

Список литературы: 
  1. Dedov I.I. Saharnyj diabet: razvitie tehnologij v diagnostike, lechenii i pro- filaktike. Saharnyj diabet. 2010; 3: 6–13. [Dedov I.I. Saharnyj diabet: razvitie tehnologij v diagnostike, lechenii i pro- filaktike. Saharnyj diabet. 2010; 3: 6–13 (in Russian)]
  2. Erdal N., Gürgül S., Demirel C., Yildiz A. The effect of insulin therapy on biomechani- cal deterioration of bone in streptozotocin (STZ)-induced type 1 diabetes mellitus in rats. Diabetes Res Clin Pract. 2012; 97 (3): 461–7. https://doi.org/10.1016/j.dia- bres.2012.03.005
  3. Jiao H., Xiao E., Graves D.T. Diabetes and Its Effect on Bone and Fracture Healing. Curr Osteoporos Rep. 2015; 13 (5): 327–35. https://doi.org/10.1007/s11914-015-0286-8.
  4. Vestergaard P. Diabetes and Bone. Diabetes Metab. 2011; 1. http:/dx.doi. org/10.4172/2155-6156.S1-001
  5. Nyman J.S., Even J.L., Jo C.H., Herbert E.G., Murry M.R., Cockrell G.E., Wahl E.C., Bunn R.C., Lumpkin C.K.Jr., Fowlkes J.L., Thrailkill K.M. Increasing duration of type 1 diabetes perturbs the strengthstructure relation ship and increases brittleness of bone. Bone. 2011; 48 (4): 733–40. https://doi. org/10.1016/j.bone.2010.12.016
  6. Weber D.R., Haynes K., Leonard M.B., Willi S.M., Denburg M.R. Type 1 diabetes is as- sociated with an increased risk of fracture across the life span: A population-based cohort study using the health improvement network (THIN). Diabetes Care. 2015; 38 (10): 1913–20. https://doi.org/10.2337/dc15-0783
  7. Wang J., You W., Jing Z., Wang R., Fu Z., Wang Y. Increased risk of vertebral fracture in patients with diabetes: a meta-analysis of cohort studies. Int Orthop. 2016; 40 (6): 1299–307. https://doi.org/10.1007/s00264- 016-3146-y.
  8. Vashishth D. The Role of the Collagen Matrix in Skeletal Fragility. Curr Osteopo- rosis Rep. 2007; 5 (2): 62–6. https://doi. org/10.1007/s11914-007-0004-2.
  9. Nudelman F., Lausch A.J., Sommerdijk N.A.J.M., Sone E.D. In vitro models of col- lagen biomineralization. J. Struct. Biol. 2013; 183 (2): 258–69. https://doi.org/10.1016/j. jsb.2013.04.003.
  10. Pal'chikova N.A., Kuznetsova N.V., Kuzmi- nova O.I., Seljatitskaja V.G. Gormonal'no- biohimicheskie osobennosti alloksa- novoj i streptozototsinovoj modelej eksperimental'nogo diabeta. Bjulle- ten' SO RAMN. 2013; 33 (6): 18–24. [Pal’chikova N.A., Kuznecova N.V., Kuzminova O.I., Seljatickaja V.G. Gormonal’no-biohimicheskie osobennosti alloksanovoj i streptozotocinovoj modelej jeksperimental’nogo diabeta. Bjulleten’ SO RAMN. 2013; 33 (6): 18–24 (in Russian)]
  11. Sharaev P.N., Sahabutdinova E.P., Le- komtseva O.I., Koshikova S.V. Oprede- lenie svobodnogo i peptidosvjazannogo gidroksiprolina v syvorotke krovi. Klin. lab. diagnostika. 2009; 1: 7–9. [Sharaev P.N., Sahabutdinova E.P., Lekomceva O.I., Koshikova S.V. Opredele- nie svobodnogo i peptidosvjazannogo gidroksiprolina v syvorotke krovi. Klin. lab. diagnostika. 2009; 1: 7–9 (in Russian)]
  12. Proshina L.Ja., Privalenko M.N. Is- sledovanie fraktsionnogo sostava kollagena v tkani pecheni. Voprosy med himii. 1982; 1: 115–9. [Proshina L.Ja., Privalenko M.N. Issledo- vanie frakcionnogo sostava kollagena v tkani pecheni. Voprosy med himii. 1982; 1: 115–9 (in Russian)]
  13. Reznikov A.G. Metody opredelenija gor- monov. Kiev: Naukova dumka; 1980; 399. [Reznikov A.G. Metody opredelenija gor- monov. Kiev: Naukova dumka; 1980; 399 (in Russian)]
  14. Starup-Linde J., Vestergaard P. Biochemi- cal bone turnover markers in diabetes mellitus – A systematic review. Bone. 2016; 82: 69–78. https://doi.org/10.1016/j. bone.2015.02.019.
  15. Omel'janenko N.P., Slutskij L.I. So- edinitel'naja tkan' (gistofiziologija i biohimija). Pod red. S.P. Mironova. M.: Izvestija, 2009; 1: 380. [Omel’janenko N.P., Sluckij L.I. Soedinitel’naja tkan’ (gistofiziologija i bio- himija). Rod red. S.P. Mironova. M.: Izvestija, 2009; 1: 380.
  16. Yang J., Zhang X., Wang W., Liu J. Insulin stimulates osteoblast proliferation and dif- ferentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct. 2010; 28 (4): 334–41. https://doi.org/10.1002/cbf.1668
  17. Garcia-Hernandez A., Arzate H., Gil- Chavarria I., Rojo R., Moreno-Fierros L. High glucose concentrations alter the biomin- eralization process in human osteoblastic cells. Bone. 2012; 50 (1): 276–88. https://doi. org/10.1016/j.bone.2011.10.032
  18. Dong X. N., Qin A., Xu J., Wang X. In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorp- tion. Bone. 2011; 49: 174–83. https://doi. org/10.1016/j.bone.2011.04.009
  19. Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018; 61 (1): 7–16. https://doi.org/0.1007/s12020- 018-1588-2
  20. Thrailkill K.M., Fowlkes J.L. The role of vitamin D in the metabolic homeostasis of diabetic bone. Clin. Rev Bone Miner Metab. 2013; 11 (1): 28–37. https://doi.org/10.1007/ s12018-012-9127-9
  21. Wahl P., Xie H., Scialla J., Anderson C.A.M., Bellovich K., Brecklin C., Chen J., Feld- man H., Gutierrez O.M., Lash J., Leonard M.B., Negrea L., Rosas S.E., Anderson A.H., Townsend R.R., Wolf M., Isakova T. Earlier onset and greater severity of disordered mineral metabolism in diabetic patients with chronic kidney disease. Diabetes Care. 2012; 35 (5): 994–1001. https://doi. org/10.2337/dc11-2235