STRUCTURALLY FUNCTIONAL ORGANIZATION OF THE GENOME OF A CLINICALLY SIGNIFICANT STRAIN HELICOBACTER PYLORI HP42K ISOLATED FROM THE PATIENT A HOSPITAL IN THE BELARUS REPUBLIC

DOI: https://doi.org/10.29296/24999490-2020-02-07

E.V. Voropaev(1), O.Yu. Baranov(1), L.N. Valentovich(2), O.V. Osipkina(1), A.A. Zyatkov(1), N.A. Bonda(3), A.V. Voropaeva(1), E.N. Platoshkin(1), V.M. Mizura(1), A.S. Shaforost(1), 1Gomel State Medical University, Lange Str., 5, Gomel, 246000, Republic of Belarus; 2Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevicha str. 2, Minsk, 220141, Republic of Belarus; 3Gomel Regional Center of Hygiene, Epidemiology and Public Health, Moiseenko str., 49, Gomel, 246050, Republic of Belarus E-mail: [email protected]

Introduction. The use of genomic approaches allows a detailed studying of the pathogenetic potential of H. pylori bacteria. The aim of the study. To investigate the genome structural and functional organization of the H. pylori isolated in the Republic of Belarus. Methods. Using next-generation sequencing with the Ion PGM System genome analyzer, a genomic analysis of the clinically significant H. pylori isolate was performed. Results. The study of the structural and functional organization of the H. pylori HP42K isolate genome can identify the pathogenetic and antigenic determinants as possible predictors of the clinical properties. The loci: five DNA motifs AATAAAGATA and EPIYA-ABC motifs in the structure of the cagA gene, as well as the oipA gene, and alleles s1 and m1a of the vacA gene were identified to be not relatedto carcinogenesis. Three circular sequences represented by chromosomal and plasmid DNA of H. pylori were identified and deposited in GenBank NCBI with identification numbers CP034314.1, CP034313.1, and CP034312.1. Conclusion. The analysis of the H. pylori HP42K isolate genome showed its pathogenetic features to be associated with the development of gastroduodenal pathology but not associated with stomach cancer risk
Keywords: 
Helicobacter pylori, plasmids, next-generation sequencing, Ion Torrent, structural and functional organization of the genome

Список литературы: 
  1. Marshall B.J., Warren J.R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984; 1 (8390): 1311–5.
  2. Calvet X., Ramirez Lázaro M-J., Lehours P., Mégraud F. Diagnosis and epidemiology of Helicobacter pylori infection. Helicobacter. 2013; 18 (Suppl 1): 5–11.
  3. Franco A.T., Johnston E., Krishna U., Yamao- ka Y., Israel D.A., Nagy T.A., Wroblewski L.E., Piazuelo M.B., Correa P., Peek R.M. Regula- tion of gastric carcinogenesis by Helico- bacter pylori virulence factors. Cancer Res. 2008; 68 (2): 379–87.
  4. Moss S.F. The Clinical Evidence Linking Heli- cobacter pylori to Gastric Cancer. Cell Mol. Gastroenterol Hepatol. 2016; 3 (2): 183–91.
  5. Baltrus D.A., Blaser M.J., Guillemin K. Helico- bacter pylori Genome Plasticity. Genome Dyn. 2009; 6: 75–90.
  6. Chang C-C, Kuo W-S, Chen Y-C, Perng C-L, Lin H-J, Ou Y-H. Fragmentation of CagA Re- duces Hummingbird Phenotype Induction by Helicobactor pylori. PLoS One. 2016; 11 (3): e0150061.
  7. Batista S.A., Rocha G.A., Rocha A.M., Saraiva I.E., Cabral M.M., Oliveira R.C., Queiroz D.M. Higher number of Helicobac- ter pylori CagA EPIYA C phosphorylation sites increases the risk of gastric cancer, but not duodenal ulcer. BMC Microbiol. 2011; 11: 61.
  8. Amieva M., Peek R.M. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology. 2016; 150 (1): 64–78.
  9. Morales-Espinosa R., González-Valencia G., Delgado G., Méndez J.L., Torres J., Cravioto
  10. A. Frequency and characterization of vapD gene in Helicobacter pylori strains of different vacA and cag-PAI genotype. Bioquimia. 2008; 33 (2): 43–50.
  11. Loh J.T., Shaffer C.L., Piazuelo M.B., Bravo L.E., McClain M.S., Correa P., Cover T.L. Analysis of cagA in Helicobacter pylori strains from Colombian populations with contrasting gastric cancer risk reveals a biomarker for disease severity. Cancer Epidemiol Biomarkers Prev. 2011; 20 (10): 2237–49.
  12. Mardis E.R. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008; 24 (3): 133–41.
  13. Tatusova T., DiCuccio M., Badretdin A., Chet- vernin V., Nawrocki E.P., Zaslavsky L., Lomsadze A., Pruitt K.D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016; 44 (14): 6614–24.
  14. Voropaeva A.V., Voropaev E.V., Baranov O.Ju., Zhavoronok S.V., Pimanov S.I., Makarenko E.V., Padutov V.E. Algoritm opredelenija genotipov i allel'nyh variantov Helicobacter pylori s ispol'- zovaniem polimeraznoj tsepnoj reak- tsii. Gomel': Uchrezhdenie obrazovanija
  15. «Gomel'skij gosudarstvennyj meditsin- skij universitet», 2009; 31.
  16. [Voropaeva A.V., Voropaev E.V., Baranov O.Ju., Zhavoronok S.V., Pimanov S.I., Makarenko E.V., Padutov V.E. Algorithm for determining genotypes and allelic variants of Helicobacter pylori using a polymer chain reaction. Gomel’: Uchrezhdenie obrazovanija «Gomel’skij gosudarstvennyj medicinskij universitet», 2009; 31 (in Russian)]