CHILDHOOD OBESITY AS A RESULT OF DETERIORATION OF THE FORMATION OF A CIRCADIAN RHYTHM OF MELATONIN IN EARLY ONTOGENESIS

DOI: https://doi.org/10.29296/24999490-2020-03-03

I.I. Evsyukova D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint-Petersburg, 199034, Russion Federation E-mail: [email protected]

The review presents literature data that are demonstrating the role of adverse environmental factors at the early stages of ontogenesis in programming and realization of the childhood obesity. In the presence of multiple factors contributing to the obesity, the key link that launches this process is impaired by circadian organisation of hormonal and metabolic processes controlled by melatonin. The role and place of melatonin in regulation of energy metabolism in the human body are considered in their normal patterns and as part of the mechanisms of the development of pathological conditions in cases of low hormone production and the absence of its circadian rhythm. The author presents the results of experimental and clinical studies, according to which during the intrauterine life the fetal clock genes of suprachiasmatic nuclei of the hypothalamus (SCN) and fetal organs are peripheral maternal circadian oscillators entrained by the maternal melatonin cycle. Maternal circadian rhythms are influential in the entrainment and programming of fetal and newborn circadian rhythms. The absence of circadian melatonin production in pregnant women, associated with the pathologies they have (obesity, diabetes, metabolic syndrome, endometriosis, pregnancy complicated by gestosis and chronic placental insufficiency, etc.) and also with night work, disrupt the genetic process of organizing the rhythmic activity of SCN genes and melatonin production in the fetal pineal gland, leading to dysregulation of metabolic processes in the child’s body after birth and programming pathology in the following life. In the absence of the circadian rhythm of melatonin secretion, all other factors contributing to the obesity aggravate desynchronization of metabolism and speed up the development of the obesity. Therefore, the perinatal period is a window of possibilities for prevention of overweight and obesity in children.
Keywords: 
melatonin, circadian rhythm, newborns, programming, obesity

Список литературы: 
  1. WHO Facts and figures on childhood obe- sity. http://www.who.int/end-childhood- obesity/facts/en/. 2017 (last accessed in January 2018).
  2. Nittari G., Scuri S., Petrelli F., Pirillo I., di Luca N.M., Grappasonni I. Fighting obesity in children from European World Health Or- ganization member states. Epidemiological data, medical-social aspects, and preven- tion programs. Clin Ter. 2019; 170 (3): 223–30. https://doi.org/10.7417/ct.2019.2137.
  3. Tutel'jan V.A., Baturin A.K., Kon' I.Ja., Martinchik A.N., Uglitskih A.K., Korosteleva M.M. Rasprostranennost' ozhirenija i izbytochnoj massy tela sredi detskogo naselenija RF: mul'titsentrovoe issledovanie. Pediatrija. 2014; 93 (5): 28–31. [Tutel’yan V.L., Baturin A.K., Kon’I.Ia., Martin- chik A.N., Uglizkich A.K., Korosteleva M.M. The prevalence of obesity and overweight among children population f the Russian Federation: a multicenter study. Pediatriya. 2014; 93 (5): 28–31 (in Russian)]
  4. Evsjukova I.I. Neonatal'nye i otdalen- nye problemy zdorov'ja detej ot mate rej s saharnym diabetom. S. 390–421 v kn. Saharnyj diabet i reproduktivnaja sistema zhenschiny: rukovodstvo dlja vra- chej (red. E.K. Ajlamazjan). M.: GEOTAR- Media, 2017; 428. [Evsyukova I.I. Neonatalnie i otdalennie problemi zdorov’ya deteij ot metereij s sacharnim diabetom. S. 390–421 v knige «Diabetes mellitus and reproductive system of women» (red. E.K. Ailamazyan). M.: GEOTAR-Media, 2017; 428 (in Russian)]
  5. Tran B.X., Dang K.A., Le H.T., Ha G.H., Nguyen L.H., Nguyen T.H., Tran T.H., Latkin C.A., Ho C.S.H., Ho R.C.M. Global Evolu- tion of Obesity Research in Children and Youths: Setting Priorities for Interventions and Policies. Obes. Facts. 2019; 12 (2): 137–9. https://doi.org/10.1159/000497121.
  6. Tappy L. Adiposity in children born small for gestational age. Int. J. Obes. (Lond). 2010; 34 (7): 1230. https://doi.org/10.1038/ sj.ijo.0803517.
  7. Mierzynski R., Dluski D., Darmochwal- Kolarz D., Poniedziałek-Czajkowska E., Leszczynska-Gorzelak B., Kimber-Trojnar Z., Agnieszka-Wankowicz, Oleszczuk J. Intrauterine Growth Retardation as a Risk Fac- tor of Postnatal Metabolic Disorders. Curr. Pharm. Biotechnol. 2016; 17 (7): 587–96. https://doi.org/10.2174/1389201017666160 301104323.
  8. Mericq V., Martinez-Aguayo A., Uauy R., Iñiguez G., Van der Steen M., Hokken-Koe- lega A. Long-term metabolic risk among children born premature or small for ges- tational age. Nat. Rev. Endocrinol. 2017; 13 (10): 50–62. https://doi.org/10.1038/ nrendo.2016.127.
  9. Voerman E., Santos S., Inskip H., Amiano P., Barros H., Charles M.A., Chatzi L. et al. As- sociation of Gestational Weight Gain With Adverse Maternal and Infant Outcomes. 2019; JAMA. 321 (17): 1702–15. https://doi. org/10/1001/jama.2019.3820.
  10. Hong Y.H., Chung S.C. Small for gestational age and obesity related comorbidities. Ann. Pediatr. Endocrinol. Metab. 2018; 23 (1): 4–8. https://doi.org/10.6065/ apem.2018.23.1.4.
  11. Hales C.N., Barker D.J.P. The thrifty phe- notype hypothesis. Br. Med. Bull. 2001; 60: 5–20. https://doi.org/10.1093/bmb/60.1.5.
  12. Koletzko B., Shamir R., Truck D., Phillip M. (eds):Nutrition and Growth: Year- book 2019. World Rev. Nutr. Diet. Basel, Karger. 2019; 119: 119–37. https://doi. org/10.1159/000494312.
  13. Trandafir L.M., Temneanu O.R. Pre and post-natal risk and determination of fac- tors for child obesity. J. Med. Life. 2016; 9 (Issue 4): 386–91. https://doi.org/10.22336/ jml.2016.0412
  14. Hellmuth C., Lindsay K.L., Uhi O., Buss C., Wadhwa P.D, Koletzko B., Entringer S. Mater- nal Metabolomic Profile and Fetal Program- ming of Offspring Adiposity: Identification of Potentially Protective Lipid Metabolites. Mol. Nutr. Food Res. 2019; 63 (1): e1700889. https://doi.org/10.1002/mnfr.201700889.
  15. Cottrell E.C., Seckl J.R. Prenatal stress, glucocorticoids and the programming of adult disease. Front. Behav. Neurosci. 2009; 3: 19. https://doi.org/10.3389/neu- ro.08.019.2009. eCollection2009.
  16. Thompson L.P., Al-Hasan Y. Impact of Oxidative Stress in Fetal Programming. J. Pregnancy. 2012; 582748. https://doi. org/10.1155/2012/582748.
  17. Reiter R.J., Tan D.X., Korkmaz A., Ma S. Obe- sity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. An. Med. 2012; 44 (6): 564–77. https://doi.org/10.3109/0785 3890.2011.586365.
  18. Richter H.G., Hansell J.A., Raut S.M, Gius- sani D.A. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J. Pineal Res. 2009; 46 (4): 357–64. https://doi. org/10.1111/j.1600-079X.200900671.x.
  19. Galano A., Tan D.X., Reiter R.J. On the free radical scavenging activities of mela- tonin’s metabolites, AFMK and AMK. J. Pineal. Res. 2013; 54 (3): 245–57.
  20. Lanoix D., Lacasse A.A., Reiter R.J., Vaillan- court C. Melatonin: the watchdog of villous trophoblast homeostasis against hypoxia/ reoxygenation-induced oxidative stress and apoptosis. Mol. Cell. Endocrinol. 2013; 38 (1–2): 35–45.
  21. Hracsko Z., Hermesz E., Ferencz A., Orvos H., Novak Z., Pal A., Varga I.S. Endothelial Nitric Oxide Synthase is Up-regulated in the Um- bilical Cord in Pregnancies Complicated with Intrauterine Growth Retardation. In Vivo. 2009; 23 (5): 727–32. PMID: 19779107.
  22. Torres-Farfan C., Valenzuela F.J., Mondaca M., Valenzuela G.J., Krause B., Herrera E.A., Riquelme R., Llanos A.J., Seron-Ferre M. Evi- dence of a role for melatonin in fetal sheep physiology: direct actions of melatoninon fetal cerebral artery, brown adipose tissue and adrenal gland. J. Physiol. 2008; 586 (16): 4017–27. https://doi.org/10.1113/ jphysiol.2008.154351
  23. Wu T.H., Kuo H.C., Lin I.C., Chien S.J., Huang L.T., Tain Y.L. Melatonin prevents neonatal dexamethasone induced programmed hy- pertension: histone deacetylase inhibition. J. Steroid. Biochem. Mol. Biol. 2014; 144: 253–9. https://doi.org/10.1016/j.jsbmb.2014.07.008.
  24. Classidy F.C., Charalambous M. Genomic im- printing, growth and maternal-fetal interac- tions. J. Exp. Biol. 2018; 221 (1): pii:jeb164517. https://doi.org/10.1242/jeb.164517.
  25. Peng Y., Yu S., Li H., Xiang H., Peng J., Jiang S. MicroRNAs: emerging roles in adipo- genesis and obesity. Cell. Signal. 2014; 26 (9): 1888–9 https://doi.org/10.1016/j. cellsig.2014.05.006.
  26. Stevens A., Begum G., White A. Epige- netic changes in the hypothalamicpro-opiomelanocortin gene: A mechanism linking maternal undernutrition to obesityin the offspring? Eur. J. Pharmacol. 2011; 660 (1): 194–201. https://doi.org/10.1016/j. ejphar.2010.10.111.
  27. Tosh D.N., Fu Q., Callaway C.W., McKnight R.A., McMillen I.C., Ross M.G., Lane R.H., Desai M. Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structurein rapid vs. delayed postnatal catch-up growth. Am. J. Physiol. Gastrointest. Liver Physiol. 2010; 299 (5): 1023–9. https://doi. org/10.1152/ajpgi.00052.2010.
  28. Mazzoccoli G., Pazienza V., Vinciguerra M. Clock Genes and Clock-Controlled Genes in the Regulation of Metabolic Rhytms. Chronobiol. Intern. 2012; 29 (3): 227–51. https://doi.org/10.3109/07420528.2012.658 127.
  29. Korkmaz A., Reiter R.J. Epigenetic regula- tion: A new research area for melatonin? J. Pineal. Res. 2008; 44 (1): 41–4. PMID: 18078446.
  30. Laermans J., Depoortere I. Chronobesity: role of the circadian system in the obesity epidemic. Obes Rev. 2016; 17 (2): 108–25. https://doi.org/10.1111/obr.12351.
  31. Hardeland R., Madrid J.A., Tan D.X., Reiter R.J. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J. Pineal Res. 2012; 52: 139–66 https://doi. org/10.1111/j.1600-079X.2011.00934.x.
  32. Reiter R.J., Rosales-Corral S., Coto-Montes A., Boga J.A., Tan D-X., Davis J.M., Konturek S.J., Brzozowski T. The photoperiod , circa- dian regulation and chronodisruption: the requisite inter play between the suprachi- asmatic nuclei and the pineal and gut melatonin. J. Physiol. Pharmacol. 2011; 62 (3): 269–74. PMID: 21893686.
  33. Kvetnoj I.M., Rajhlin N.T., Juzhakov V.V., Ingel' I.E. Ekstrapineal'nyj melato- nin: mesto i rol' v nejroendokrinnoj reguljatsii gomeostaza. Bjul. eksper. biol. 1999; 127 (4): 364–70. [Kvetnoj I.M., Rajhlin N.T., Juzhakov V.V., Ingel’ I.Je. Jekstrapineal’nyj mela- tonin: mesto i rol’ v nejrojendokrinnoj reguljacii gomeostaza. Bjulleten’ jeksperimental’noj biologii. 1999; 127 (4): 364–70 (in Russian)]
  34. Tan D.X., Manchester L.C., Liu X., Rosales- Corral S.A., Acuna-Castroviejo D., Reiter R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 2013; 54 (2): 127–38. https://doi. org/10.1111/jpi.12026
  35. Ma X., Idle J.R., Krausz K.W., Gonzalez F.JJ. Metabolism of melatonin by human cy- tochromes p450. Drug Metab. Dispos. 2005; 33 (4): 489–94. https://doi.org/10.1124/ dmd.104.002410.
  36. Dubocovich M.L. Melatonin receptors: role on sleep and circadian rhythm regula- tion. Sleep. Med. 2007; 8 (3): 34–42. PMID: 18032103.
  37. Slonimski R.M., Reiter R.J., Schlabritz-Loutse- vith N., Ostrom R.S., Slominski A.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell. En- docrinol. 2012; 351 (2): 152–66. https://doi. org/10.1016/j.mce.2012.01.004.
  38. Cipolla-Neto J., Amaral F.G., Afeche S.C., Tan D.X., Reiter R.J. Melatonin, energy metabolism, and obesity: a review. J. Pineal Res. 2014; 56 (4): 371–81. https://doi. org/10.1111/jpi.12137
  39. Soderquist F., Hellstrom P.M., Cunningham J.L. Human gastroenteropancreatic expres- sion of melatonin and its receptors MT1` and MT2. PLoS One. 2015; 10 (3): e0120195. htt- ps://doi.org/10.1371/journal.pone.0120195.
  40. Peschke E., Bahr I., Muhlbauer E. Experi- mental and clinical aspects of melatonin and clock genes in diabetes. J. Pineal Res. 2015; 59 (1): 1–23. https://doi.org/10.1111/ jpi.12240.
  41. Marcheva B., Ramsey K.M., Buhr E.D., Kobayashi Y., Su H., Ko C.H., Ivanova G., Omura C., Mo S., Vitaterna M.H., Lopez J.P., Philipson L.H., Bradfield C.A., Crosby S.D., JeBailey L., Wang X., Takahashi J.S., Bass J. Disruption of the clock components CLOCK and BMAL1 leads to hipoinsulinaemia and diabetes. Nature. 2010; 466 (7306): 627–31. https://doi.org/10.1038/nature09253.
  42. Varcoe T.J., Voultsios A., Gatford K.L., Kennaway D.J. The impact of prenatal of circadian rhythm disruption on pregnancy outcomes and long-term metabolic health mice progeny. Cronobiol. Int. 2016; 33 (9): 1171–81. https://doi.org/10.1080/07420528. 2016.1207661.
  43. Alonso-Vale M.I., Andreotti S., Mukai P.Y., Borges-Silva C.D., Peres S.B., Cipolla-Neto J., Lima F.B. Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J. Pineal Res. 2008; 45 (4): 422–9. https://doi. org/10.1111/j.1600-079X.2008.00610.x.
  44. Plano S.A., Casiraghi L.P., Garcia Moro P., Paladino N., Golombek D.A., Chiesa J.J. Circadian and metabolic effects of light: implications in weight homeostasis and health. Front Neurol. 2017; 8: 558. https:// doi.org/10.3389/fneur.2017.00558. eCollec- tion2017
  45. Reiter R.J., Tan D.X., Korkmaz A., Rosales- Corral S.A. Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod. 2014; 20 (2): 293–307. https://doi.org/10.1093/humupd/ dmt054.
  46. Evsjukova I.I., Kvetnoj I.M. Melatonin i tsirkadnye ritmy v sisteme mat'–pla- tsenta–plod. Mol. med. 2018; 16 (6): 9–13. [Evsyukova I.I., Kvetnoy I.M. Melatonin and circadian rhythms in the system mother– placenta–fetus. Molecularnaya meditsina. 2018; 16 (6): 9–13 (in Russian). https://doi. org/10.29296/24999490-2018-06-02]
  47. Waddell B.J., Wharfe M.D., Crew R.C., Mark P.J. A rhythmic placenta? Circadian varia- tion Clock genes and placental function. Placenta. 2012; 33 (7): 533–9. https://doi. org/10.1016/j.placenta.2012.03.008.
  48. Kennawey D.J. Melatonin and develop- ment physiology and pharmacology. Sem. Perinatol. 2000; 24: 258–66. PMID: 10975432.
  49. Kovacikova Z., Sladek M., Bendova Z., Millnerova H., Simova A. Expression of clock and clock-driven genes in the rat suprachi- asmatic nucleus during late fetal and early postnatal development. Biol. Rhythms. 2006; 21 (2): 140–8. PMID: 16603678.
  50. Seron-Ferre M., Valenzuela G.J., Torres-Far- fan C. Circadian clocks during embryonic and fetal development. Birth Defects Res. (Part C). 2007; 81 (3): 204–14. https://doi. org/10.1002/bdrc.20101
  51. Varcoe T.J., Boden M.J., Voultsios A., Salkeld M.D., Rattanatray L., Kennaway D.J. Characterisation of the Maternal Response to Chronic Phase Shifts during Gestation in the Rat: Implications for Fetal Metabolic Programming. PloS ONE. 2013; 8 (1): e53800. https://doi.org/10.1371/journal. pone0053800.
  52. Torres-Farfan C., Seron-Ferre M., Dinet V., Korf H.W. Immunocytochemical demon- stration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin- proficient (C3H) and melatonin-deficient (C57BL) mice. J. Pineal Res. 2006; 40 (1): 64–70. PMID: 16313500.
  53. Torres-Farfan C., Rocco V., Monso C., Valenzuela F.J., Campino C., Germain A., Torrealba F., Valenzuela G.J., Seron-Ferre M. Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology. 2006; 147 (10): 4618–26. PMID: 16840546.
  54. Mirmiran M., Maas Y.G., Ariagno R.L. Devel- opment of fetal and neonatal sleep and circadian rhythms. Sleep. Med. Rev. 2003; 7 (4): 321–34. PMID: 14505599.
  55. Mendez N., Abarzua-Catalan L., Vilches N., Galdames H.A., Spichiger C., Richter H.G., Valenzuela G.J., Seron-Ferre M., Torres- Farfan C. Timed Maternal of Melatonin Treatment Reverses Circadian Disruption the Fetal Adrenal Clock Imposed by Expo- sure to Constant Light. PloS ONE. 2012; 7 (8): e42713. https://doi.org/10.1371/journal. pone0042713.
  56. Seron-Ferre M., Mendez M., Abarzua-Cata- lan L., Vilches N,. Valenzuela F.J., ReynoldsH.E., Llanos A.J., Rojas A., Valenzuela G.J., Torres-Farfan C. Circadian rhythms in the fetus. Mol. Cell. Endocrinol. 2012; 349 (1): 68–75. https://doi.org/10.1016/j. mce.2011.07.039.
  57. Ajlamazjan E.K., Evsjukova I.I., Jarmolinskaja M.I.. Rol' melatonina v razvitii gestatsionnogo saharnogodiabeta. Zhurnal akush. zhen. boleznej. 2018; 67 (1): 87–91. [Ailamazyan E.K., Evsyukova I.I., Yarmolins- kaya M.I. The role of melatonin in develop- ment of gestation diabetes mellitus. Jour- nal of Obstetrics and Women’s Diseases. 2018; 67 (1): 87–91 (in Russian). https://doi. org/10.17816/JOWD67185-91]
  58. Forrestel A.C., Miedlich S.U., Yurcheshen M., Wittlin S.D., Sellix M.T. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 2017; 60 (5): 808–22. https://doi.org/10.1007/s00125- 016-4175-1.
  59. Zeng K., Gao Y., Wan J., Tong M., Lee A.C., Zhao M., Chen Q. The reduction in circulat- ing levels of melatonin may be associated with the development of preeclampsia. J. Hum. Hypertens. 2016; 30 (11): 666–71.https://doi.org/10.1038/jhh.2016.37.
  60. Stenvers D.G., Scheer F., A.J.L., Schrau- wen P., l fleur S.E., Kalsbeek A. Circadianclocks and insulin rewsistance. Nat. Rev. Endocrinol. 2019; 15 (2): 7589. https://doi. org/10.1038/s41574-018-0122-1
  61. Chen Y-C., Sheen J-M., Tiao M-M., Tain Y.L., Huang L.T. Role of Melatonin in Fetal Programming in Compromised Pregnan- cies. Int. J. Mol. Sci. 2013; 14 (3): 5380–401. https://doi.org/10.3390/ijms14035380.
  62. Molad M., Ashkenazi L., Gover A., Lavie- Nevo K., Zaltsberg-Barak T., Shaked-Mishan P., Soloveichik M., Kessel I., Rotschild A., Etzioni T. Melatonin Stability in HumanMilk. Breastfeed Med. 2019; 14 (9): 680–2. https://doi.org/10.1089/bfm.2019.0088.
  63. Daniels K.M., Farmer C., Jimenez-Flores R., Rijnkels M. Lactation Biology Symposium: the long-term impact of epigeneticsand maternal influence on the neonate through milk-borne factors and nutrient status. J. Anim. Sci. 2013; 91 (2): 673–5. https://doi.org/10.2527/jas.2013-6237.
  64. Cipola-Neto J., Amral F.G.D. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr. Rev. 2018; 39 (6): 990–1028. https://doi.org/10.1210/er.2018-00084.
  65. Tain Y.L., Huang L.T., Hsu C.N. Developmen- tal Programming of Adult Disease: Repro- gramming by Melatonin? Int. J. Mol. Sci. 2017; 18 (2): 426. https://doi.org/10.3390/ ijms. 18020426.