NEURODEGENERATIVE DISEASES AND BIOMEDICAL CELL PRODUCTS: RELEVANCE, DIRECTIONS, AND PROBLEMS OF DEVELOPMENT

DOI: https://doi.org/10.29296/24999490-2020-04-02

E.O. Kozhevnikova, E.V. Melnikova, O.A. Rachinskaya, I.S. Semenova, V.A. Merkulov Scientific Centre for Expert Evaluation of Medicinal Products, Petrovsky boulevard, 8/26, Moscow, 127051, Russian Federation E-mail: [email protected]

Progress in clinical research and medicine has contributed to a significant reduction in the worldwide mortality rate. Currently, the strategy of developed countries is directed at increasing expectancy and improving life quality. As a consequence, the modern world is already faced the problems of aging and age-related diseases. Neurodegenerative diseases are one of the main medical problems suffered by an «aging» population of people. Stem cells as a part of biomedical cell products (preparations based on viable somatic human cells), which can have a regenerative function on the brain and spinal cord neurons or can be used for replacement therapy, are considered as one of the directions of the development of new approaches to the treatment for neurodegenerative diseases. The paper describes the features of using and development of stem cell-based drugs promising for the treatment of such neurodegenerative diseases as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, and lateral amyotrophic sclerosis. There are considered clinical studies conducted in the world with the use of mesenchymal stem cells from umbilical cord blood, bone marrow, neuronal and embryonic stem cells for the treatment of neurodegenerative diseases. Currently, clinical studies of preparations based on viable human cells for the treatment of neurodegenerative diseases are mainly characterized by the proven safety of their use and specific immunomodulatory activity. Given at the early stages of clinical trials involving a limited number of patients mainly in single-center localization, data on the efficiency of using the stem cells regenerative potential for the treatment of neurodegenerative diseases will be available in the future.
Keywords: 
neurodegenerative diseases, cell therapy, biomedical cell product, stem cells, preparations based on viable human cells

Список литературы: 
  1. Commission Regulation (EC) No. 507/2006.
  2. Illarioshkin C.H. Rannjaja diagnostika nejrodegenerativnyh zabolevanij. Nervy. 2008; 1: 11–3. [Early diagnosis of neurodegenerative diseases. Illarioshkin S.N. Nervs. 2008; 1: 11–3 (in Russian)]
  3. Sajt European Medicine Agency [Elektronnyj resurs]. Defining unmet medical need. 2019. URL: https://www.ema.europa.eu/en/documents/presentation/presentation-defining-unmet-medical-need-jstokx_en.pdf.
  4. Sajt World Health Organization [Elektronnyj resurs]. New WHO guidelines promote healthy lifestyle to reduce risk of dementia. 2019. URL: http://www.euro.who.int/ru/health-topics/Life-stages/healthy-ageing/news/news/2019/05/new-who-guidelines-promote-healthy-lifestyle-to-reduce-risk-of-dementia.
  5. Summary basis for regulatory action – YESCARTA [Elektronnyj resurs]. Food and Drug Administration. 2017. URL: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM584335.pdf (data obraschenija 17.10.2018).
  6. Summary of product characteristics. Holoclar (EMA/6865/2015) [Elektronnyj resurs]. European Medicines Agency. 2015. URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002450/WC500183404.pdf (data obraschenija 06.02.2018).
  7. Summary basis for regulatory action – KYMRIAH [Elektronnyj resurs]. Food and Drug Administration, 2018. URL: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM606836.pdf (data obraschenija 17.10.2018).
  8. Vasil'ev R.G., Gritsyk V.F., Litvinova L.S., Rodnichenko A.E., Gubar' O.S., Shupletsova V.V. Postnatal'nye mul'tipotentnye stvolovye/progenitornye kletki – proizvodnye nervnogo grebnja: transljatsija v klinicheskuju praktiku. Geny i Kletki. Materialy III natsional'nogo kongressa po regenerativnoj meditsine. Moskva, (nojabr' 2017 g.); XII (3): 35. [Vasilyev R.G., Gritsyk V.F., Litvinova L.S., Rudnichenko A.E., Gubar O.S., Shupletsova V.V. Postnatal multipotent stem/progenitor cells – derived neural crest: translation into clinical practice. Genes and Cells. Proceedings of the III national Congress on regenerative medicine Moscow. 2017; XII (3): 35 (in Russian]
  9. Summary of product characteristics. Strimvelis (EMA/CHMP/249031/2016) [Elektronnyj resurs]. European Medicines Agency. 2016. URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003854/WC500208199.pdf (data obraschenija 29.08.2018).
  10. Federal'nyj zakon ot 23.06.2016 № FZ-180 «O biomeditsinskih kletochnyh produktah». [Federal law No. FZ-180 of 23.06.2016 «About biomedical cell products» (in Russian)]
  11. Sajt Natsional'nogo meditsinskogo issledovatel'skogo tsentra detskoj gematologii, onkologii i immunologii imeni Dmitrija Rogacheva (Moskva). URL: http://www.fnkc.ru/index.jsp?load=news&year=2018&month=7&id=153. [Website of the national medical research center of pediatric Hematology, Oncology and immunology named after Dmitry Rogachev (Moscow) (in Russian)]
  12. BIOCAD investiruet $26 mln v infrastrukturu sozdanija genno-terapevticheskih preparatov [Elektronnyj resurs]. 2018. URL: https://gmpnews.net/2018/05/biocad-will-invest-26-million-in-infrastructure-for-gene-therapies-development/. [BIOCAD invests $26 million in the infrastructure for the creation of gene therapy drugs [Electronic resource]. 2018 (in Russian)]
  13. Ponomareva A.S., Surguchenko V.A., Mozhejko N.P., Il'inskij I.M., Sevast'janov V.I. Ispol'zovanie mezenhimal'nyh stromal'nyh kletok zhirovoj tkani cheloveka i biopolimernyh matriksov dlja tkaneinzhenernoj konstruktsii hrjascha. Tsitologija. 2011; 53 (9): 743.
  14. [The use of human adipose tissue mesenchymal stromal cells and biopolymer matrices for tissue engineering design of cartilage. Ponomareva A.S., Sorochenko V.A., Mozheiko N.P. Ilinskiy I.M., Sevastianov V.I. Cytology. 2011; 53 (9): 743 (in Russian)]
  15. Dauphinot V., Delphin-Combe F., Mouchoux C., Dorey A., Bathsavanis A., Makaroff Z., Rouch I., Krolak-Salmon P. Risk factors of caregiver burden among patients with Alzheimer’s disease or related disorders: a cross-sectional study. J. Alzheimers Diseases. 2015; 44 (3): 907–16.
  16. Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochemistry. 2009; 110 (4): 1129–34.
  17. Harper P., Bates G., Jones L. Huntington’s desease. New York: Oxford University Press, 2002; 558.
  18. Balestrino R., Schapira A.HV. Parkinson Disease. Eur J. Neurol. 2019. https://doi.org/10.1111/ene.14108. [Epub ahead of print].
  19. Benbrika S., Desgranges B., Eustache F., Viader F.. Cognitive, Emotional and Psychological Manifestations in Amyotrophic Lateral Sclerosis at Baseline and Overtime: A Review. Front Neurosci. 2019; 13: 951.
  20. Owens B. Multiple sclerosis. Nature. 2016; 540 (7631): 1.
  21. Santiago J., Potashkin J. A network approach to clinical intervention in neurodegenerative diseases. Trends in Molecular Medcine. 2014; 20: 694–703.
  22. Singh S., Srivastava A., Srivastava P., Dhuriya Y.K., Pandey A., Kumar D., Rajpurohit C.S. Advances in Stem Cell Research- A Ray of Hope in Better Diagnosis and Prognosis in Neurodegenerative Diseases. Front Mol. Biosci. 2016; 3: 72.
  23. Zhang F.-Q., Jiang J.-L., Zhang J.-T., Niu H., Fu X.-Q., Zeng L.-L. Current status and future prospects of stem cell therapy in Alzheimer’s disease. Neural Regen Res. 2019; 15 (2): 242–50.
  24. Mason A.R., Ziemann A., Finkbeiner S. Targeting the low-hanging fruit of neurodegeneration. Neurology. 2014; 83 (16): 1470–3.
  25. Yagi T., Kosakai A., Ito D., Okada Y., Akamatsu W., Nihei Y., Nabetani A., Ishikawa F., Arai Y., Hirose N., Okano H., Suzuki N. Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research. PLoS One. 2012; 7: e41572.
  26. Yuewen Tang, Pei Yu, Lin Cheng. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis. 2017; 8 (10): e3108.
  27. Qu T., Brannen C.L., Kim H.M., Sugaya K. Human neural stem cells improve cognitive function of aged brain. Neuroreport. 2001; 12 (6): 1127–32.
  28. Chia-Yu Chang, Hsiao-Chien Ting, Ching-Ann Liu, Hong-Lin Su, Tzyy-Wen Chiou, Horng-Jyh Harn, Shinn-Zong Lin. Induced Pluripotent Stem Cells: A Powerful Neurodegenerative Disease Modeling Tool for Mechanism Study and Drug Discovery. Cell Transplant. 201; 27 (11): 1588–602.
  29. Fu-Qiang Zhang, Jin-Lan Jiang, Jing-Tian Zhang, Han Niu, Xue-Qi Fu, Lin-Lin Zeng. Current status and future prospects of stem cell therapy in Alzheimer’s disease. Neural regeneration research. 2019; 15 (2): 242–50.
  30. Wang Y.K., Zhu W.W., Wu M.H., Wu Y.H., Liu Z.X., Liang L.M., Sheng C., Hao J., Wang L., Li W., Zhou Q., Hu B.Y. Human Clinical-Grade Parthenogenetic ESC-Derived Dopaminergic Neurons Recover Locomotive Defects of Nonhuman Primate Models of Parkinson’s Disease. Stem Cell Reports. 2018; 11 (1): 171–82.
  31. Sugarman J. Human stem cell ethics: beyond the embryo. Cell Stem Cell. 2008; 2: 529–33.
  32. Hyun I., Lindvall O., Ahrlund-Richter L., Cattaneo E., Cavazzana-Calvo M., Cossu G., De Luca M., Fox I.J., Gerstle C., Goldstein R.A., Hermerén G., High K.A., Kim H.O., Lee H.P., Levy-Lahad E., Li L., Lo B., Marshak D.R., McNab A., Munsie M., Nakauchi H., Rao M., Rooke H.M., Valles C.S., Srivastava A., Sugarman J., Taylor P.L., Veiga A., Wong A.L., Zoloth L., Daley G.Q. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell. 2008; 3: 607–9.
  33. Subcommitte on Motor Neuron Diseases of World Federation of Neurology Research Group on Neuromuscular Diseases, El Escorial «Clinical limits of ALS» Workshop Contributors. El Escorial World Federation of Neurology criteria for the dignosis of amyotrophic lateral sclerosis. Journal of the Neurological Sciences. 1994; 124: 96–107.
  34. Sajt World Federation of Neurology. Fostering quality neurology and brain health worldwide [Elektronnyj resurs]. 2019. URL: https://wfneurology.org/.
  35. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984; 34 (7): 939–44.
  36. DSM-IV. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Washington, DC. 1994.
  37. Poser C.M., Paty D.W., Scheinberg L., McDonald W.I., Davis F.A., Ebers G.C., Johnson K.P., Sibley W.A., Silberberg D.H., Tourtellotte W.W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983; 13 (3): 227–31.
  38. McDonald W.I., Compston A., Edan G., Goodkin D., Hartung H.P., Lublin F.D., McFarland H.F., Paty D.W., Polman C.H., Reingold S.C., Sandberg-Wollheim M., Sibley W., Thompson A., van den Noort S., Weinshenker B.Y., Wolinsky J.S. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Annals of neurology. 2001; 50 (1): 121–7.
  39. Kim H.J., Seo S.W., Chang J.W., Lee J.I., Kim C.H., Chin J., Choi S.J., Kwon H., Yun H.J., Lee J.M., Kim S.T., Choe Y.S., Lee K.H., Na D.L. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase 1 clinical trial. Alzheimers Dement (N Y). 2015; 1 (2): 95–102.
  40. Mazzini L., Gelati M., Profico D.C., Sgaravizzi G., Projetti Pensi M., Muzi G., Ricciolini C., Rota Nodari L., Carletti S., Giorgi C., Spera C., Domenico F., Bersano E., Petruzzelli F., Cisari C., Maglione A., Sarnelli M.F., Stecco A., Querin G., Masiero S., Cantello R., Ferrari D., Zalfa C., Binda E., Visioli A., Trombetta D., Novelli A., Torres B., Bernardini L., Carriero A., Prandi P., Servo S., Cerino A., Cima V., Gaiani A., Nasuelli N., Massara M., Glass J., Sorarù G., Boulis N.M., Vescovi A.L. Human neural stem cell transplantation in ALS: initial results from a phase I trial. J. Transl Med. 2015; 27: 13–7.
  41. Nabavi S.M., Arab L., Jarooghi N., Bolurieh T., Abbasi F., Mardpour S., Azimyian V., Moeininia F., Maroufizadeh S., Sanjari L., Hosseini S.E., Aghdami N. Safety, Feasibility of Intravenous and Intrathecal Injection of Autologous Bone Marrow Derived Mesenchymal Stromal Cells in Patients with Amyotrophic Lateral Sclerosis: An Open Label Phase I Clinical Trial. Cell J. 2019; 20 (4): 592–8.
  42. Camilleri E.T., Gustafson M.P., Dudakovic A., Riester S.M., Garces C.G., Paradise C.R., Takai H., Karperien M., Cool S., Sampen H.J., Larson A.N., Qu W., Smith J., Dietz A.B., van Wijnen A.J. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016; 7 (1): 107.
  43. Riordan N.H., Morales I., Fernández G., Allen N., Fearnot N.E., Leckrone M.E., Markovich D.J., Mansfield D., Avila D., Patel A.N., Kesari S., Paz Rodriguez J. Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J. Transl Med. 2018; 16 (1): 57.
  44. Harris V.K., Stark J., Vyshkina T., Blackshear L., Joo G., Stefanova V., Sara G., Sadiq S.A. Phase I Trial of Intrathecal Mesenchymal Stem Cell-derived Neural Progenitors in Progressive Multiple Sclerosis. EBioMedicine. 2018; 29: 23–30.
  45. Karussis D., Karageorgiou C., Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P., Ben-Hur T., Abramsky O., Slavin S. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010; 67 (10): 1187–94.