HYALURONIC ACID IN THE CELL CYCLE OF TUMOR CELLS

DOI: https://doi.org/10.29296/24999490-2020-05-02

V.N. Khabarov(1), N.N. Belushkina(2), M.A. Paltsev(2), I.M. Kvetnoy(3, 4) 1-Research Center of hyaluronic acid, Komsomolsky Ave. 38/16, Moscow, 119146, Russian Federation; 2-Lomonosov Moscow State University, Leninskie gory, 1/12, Moscow, 119991, Russian Federation; 3-Saint-Petersburg State Research Institute of Phthisiopulmonology, Ligovskij avenue, 2–4, Saint-Petersburg, 191036, Russian Federation; 4-Saint-Petersburg State University, Universitetskaia emb., 7–9, Saint-Petersburg, 199034, Russian Federation E-mail: [email protected]

The review considers the role of hyaluronic acid (HA), primarily low-molecular-weight fractions of HA, in the regulation of the cell cycle of tumor cells. The formation of a pool of low-molecular weight HA molecules is due to the high activity of hyaluronidases, absolutely prerequisite for the development of a tumor in the case of intensive cell division. There was also a high level of HA in tumor cells due to the increased activity of hyaluronate synthases HAS1, 2, 3. HA, interacting with the CD44 receptor, alter the functional activity of cytokines, regulatory proteins, and gene groups. This contributes to the continuous proliferation of the tumor cells and strengthens the processes associated with cell invasion and migration. The formation of a complex of receptors around CD44 plays an important role in the continuous activation of the cycle responses in tumor cells. In most types of normal cells, the activity of CD44 receptor genes is suppressed by the p53 protein. The degeneration of a normal cell into a tumor cell is usually associated with deletions and mutations of the p53 protein gene, resulting in high activity of the CD44 receptor. In the case of the native p53 protein gene, activation of the CD44 receptor gene is carried out due to a high concentration of IL-6 cytokine, which activates and supports a cascade of CD44 gene activation responses. As a result, there is a constant activity of a number of major regulatory proteins: C-Myc, c-Ras, c-Src, K-Ras, Akt, ERK, β-catenin, STAT3, etc., characteristic of tumor cells.`
Keywords: 
hyaluronic acid, cell cycle, CD44, low molecular weight fraction of hyaluronic acid, tumor cell

Список литературы: 
  1. Caon I., Bartolini B., Parnigoni A., Caravà E., Moretto P., Viola M., Karousou E., Vigetti D., Passi A. Revisiting the hallmarks of cancer: The role of hyaluronan. Semin Cancer Biol. 2020; 62: 9–19. https://doi.org/10.1016/j.semcancer.2019.07.007.
  2. Chen X., Du Y., Liu Y., He Y., Zhang G., Yang C., Gao F. Hyaluronan arrests human breast cancer cell growth by prolonging the G0/G1 phase of the cell cycle . Acta Biochim Biophys Sin (Shanghai). 2018; 50 (12): 1181–9.
  3. Tammi M.I., Oikari S., Pasonen-Seppänen S. Activated hyaluronan metabolism in the tumor matrix – Causes and consequences. Matrix Biol. 2019; 78/79: 147–64. https://doi.org/10.1016/j.matbio.2018.04.012.
  4. Itano N. Simple primary structure , complex turnover regulation and roles of hyaluronan. J. Biochem. 2008; 144: 131–7. http://dx.doi.org/10.1093/jb/mvn046.
  5. Cheng X.B., Kohi S., Koga A., Hirata K., Sato N. Hyaluronan stimulates pancreatic cancer cell motility. Oncotarget. 2016; 26, 7 (4): 4829–40. https://doi.org/10.18632/oncotarget.6617.
  6. Nussinov R., Tsai C., Jang H. Oncogenic Ras Isoforms Signaling Specificity at the Membrane. Cancer Res. 2018; 78 (3): 593–602. https://doi.org/10.1158/0008-5472.CAN-17-2727.
  7. Hood F., Klinger B., Newlaczyl A., Sieber A., Dorel M., Oliver S., Coulson J., Blüthgen N., Prior I. Isoform-specific Ras signaling is growth factor dependent . Mol. Biol. Cell. 2019; 30 (9): 1108–17. https://doi.org/10.1091/mbc.E18-10-0676.
  8. Passi A., Vigetti D., Buraschi S., Iozzo R. Dissecting the role of hyaluronansynthases in the tumor microenvironment. FEBS J. 2019; 286 (15): 2937–49. https://doi.org/10.1111/febs.14847.
  9. Li J., Wang Y., Qin C., Yao R., Zhang R., Wang Y., Xie X., Zhang L., Ren Z. Over expression of hyaluronan promotes progression of HCC via CD44-mediated pyruvate kinase M2 nuclear translocation. Am. J. Cancer. Res. 2016; 6: 509–21.
  10. De Simone V., Franzè E., Ronchetti G., Colantoni A., Fantini M., Di Fusco D., Sica G., Sileri P., MacDonald T., Pallone F., Monteleone G., Stolfi C. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2015; 34 (27): 3493–503. http://dx.doi.org/10.1038/onc.2014.286.
  11. Hu J., Che L., Li L., Pilo M., Cigliano A., Ribback S., Li X., Latte G., Mela M., Evert M., Dombrowski F., Zheng G., Chen X., Calvisi D. Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci. Rep. 2016; 6: 20484. https://doi.org/10.1038/srep20484.
  12. Evanko S.P., Parks W.T., Wight T.N. Intracellular hyaluronan in arterial smooth muscle cells: association with microtubules, RHAMM, and mitotic spindle. J. Histochem. Cytochem. 2004; 52: 1525–35. https://doi.org/10.1369/jhc.4A6356.2004.
  13. Barrett T.W. Mechanoelectrical transducti on in hyaluronic acid salt solution is an entropy-driven process. Pysiol. Chem. Phys. 1976; 8 (2): 125–30.
  14. Bojkov P.Ja., Habarov V.N. Gialuronan v onkologii. Ostsilljatornaja gipoteza onkogeneza. M.: OOO «Advansed soljushnz», 2018. [Bojkov P.YA., Habarov V.N. Hyaluronan in Oncology. Oscillatory hypothesis of oncogenesis. M.: OOO «Advansed solyushnz», 2018 (in Russian)]
  15. Park J., Kim S., Kim H. A reciprocal regulatory circuit between CD44 and FGFR2 via c-Myc controls gastric cancer cell growth. Oncotarget. 2016; 7 (19): 28670–83. https://doi.org/10.18632/oncotarget.8764.
  16. Kohi S., Sato N., Cheng X.B., Koga A., Higure A., Hirata K. A novel epigenetic mechanism regulating hyaluronan production in pancreatic cancer cells. Clin. Exp. Metastasis. 2016; 33 (3): 225–30. https://doi.org/10.1007/s10585-015-9771-9.
  17. Habarov V.N., Bojkov P.Ja., Ivanov P.L., Moskovtsev A.A.. Pereprogrammirovanie genoma v adaptivnyh reaktsijah kletki. Molekuljarnaja meditsina. 2019; 17 (1): 32–6. https://doi.org/10.29296/24999490-2019-01-05. [Khabarov V.N., Boykov P.J., Ivanov P.L., Moskovtsev A.A. Reprogramming of the genome in adaptive responses of the cell. Molekulyarnaya meditsina. 2019; 17 (1): 32–6 (in Russian)]
  18. Fisher R.P. Getting to S: CDK functions and targets on the parth to cell-cycle commitment. F1000Res. 2016; 5: 2374–7. https://doi.org/10.12688/f1000research.9463.1.
  19. Llinas-Areas P., Esteller M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol. 2017; 7 (9): 170152. https://doi.org/10.1098/rsob.170152.
  20. Lohez O.D., Reynaud C., Andreassen P.R., Margolis R.I. Arrest of mammalian fibroblasts in G1 in response to actin inhibition is dependent on retinoblastoma pocket proteins but not on p53. J. Cell. Biol. 2003; 161 (1): 67–77. http://dx.doi.org/10.1083/jcb.200208140.
  21. Chaudhury I., Koepp D.M. Recovery from the DNA replication checkpoint. Genes (Basel). 2016; 7 (11): E94. https://doi.org/10.3390/genes7110094.
  22. Wang J., Hannon G.J, Beach D.H. Risky immortalization by telomerase. Nature. 2000; 405: 755–6. https://doi.org/10.1038/35015674.
  23. Chung S., Aroh C., Vadgama J. Constitutive activation of STAT3 signaling regulates hTERT and promotes stem cell-like traits in human breast cancer cells. PLoS One. 2013; 8 (12): e83971. https://doi.org/10.1371/journal.pone.0083971.
  24. Hayflick L. How and why we age. Exp. Gerontol. 1999; 33 (7–8): 639–53. https://doi.org/10.1016/S0531-5565(98)00023-0.
  25. Zhang H.Y., Liang F., Wang F Zhang J.W., Wang L., Kang X.G., Wang J., Dual Q.I. In vitro effects of HAS-2 gene silencing on proliferation and apoptosis of the. MCF-7 human breast cancer cell line. Cell Physiol. Biochem. 2016; 40: 807–17. http://dx.doi.org/10.1159/000453140.
  26. Habarov V.N., Bojkov P.Ja. Biohimija gialuronovoj kisloty. M.: «Tiso Print», 2016; 288. [Habarov V.N., Bojkov P.YA. Biochemistry of hyaluronic acid. M.: «Tiso-print», 2016, 288 (in Russian)]
  27. Ghosh A., Kuppusamy H., Pilarski I.M. Aberrant splice variants of HAS1 (hyaluronan synthase) multimerize with and modulate normally spliced HAS1 protein: a potential mechanism promoting human cancer. J. Biol. Chem. 2009; 284: 18840–50. https://doi.org/10.1074/jbc.M109.013813.
  28. 28. Boroughs L.K., DeBerardinis R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell. Biol. 2015; 17 (4): 351–9. https://doi.org/10.1038/ncb3124.
  29. 29. Deen A.J., Arasu U.T., Pasonen-Seppanen S., Hassinen A., Takabe P., Wojciechowskki S., Rilla K., Tammi R., Tammi M., Oikaris S. UDP-sugar substrates of HAS3 regulate its O-GlcNacylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cell Mol. Life Sci. 2016; 73 (16): 3183–204. https://doi.org/10.1007/s00018-016-2158-5.
  30. 30. Alam M., Kumar S., Singh V., Singh R. Bifurcation in Cell Cycle Dynamics Regulated by p53.PLoS One. 2015; 10 (6): e0129620. https://doi.org/10.1371/journal.pone.0129620.
  31. 31. Stern R. Hyaluronan in cancer biology. Semin. Cancer Biol. 2008; 18 (4): 237. https://doi.org/10.1016 / j.semcancer.2008.04.001.
  32. 32. Becker J., Craig E.A. Heat-chock proteins as molecular chaperones. Eur. J. Biochem. 1994; 219 (1–2): 11–23. https://doi.org/10.1007/978-3-642-79502-2_2.
  33. 33. Albano G., Bonanno A., Cavalieri L., Ingrassia E., Di Sano C., Siena L., Riccobono L., Gagliardo R., Profita M. Effect of High, Medium, and Low Molecular Weight Hyaluronan on Inflammation and Oxidative Stress in an In Vitro Model of Human Nasal Epithelial Cells. Mediators Inflamm. 2016; 8727289. https://doi.org/10.1183 / 13993003. congress-2016. PA5064.
  34. 34. Harris E., Cabral F. Ligand Binding and Signaling of HARE/Stabilin-2. Biomolecules. 2019; 9 (7): E273. https://doi.org/10.3390/biom9070273.
  35. 35. Asai R., Tsuchiya H., Amisaki M., Makimoto K., Takenaga A., Sakabe T., Hoi S., Koyama S., Shiota G. CD44 standard isoform is involved in maintenance of cancer stem cells of a hepatocellular carcinoma cell line. Cancer Med. 2019; 8(2): 773-82. DOI:10.1002/cam4.1968.
  36. 36. Zhang H., Brown R., Wei Y., Zhao P., Liu S., Liu X., Deng Y., Hu X., Zhang J., Gao X., Kang Y., Mercurio A., Goel H., Cheng C. CD44splice isoform switching determines breast cancer stem cell state. Genes Dev. 2019; 33 (3–4): 166–79. https://doi.org/10.1101/gad.319889.118.
  37. 37. Chanmee T., Ontong P., Izumikawa T., Higashide M., Mochizuki N., Chokchaitaweesuk C., Khansai M., Nakajima K., Kakizaki I., Kongtawelert P., Taniguchi N., Itano N. Hyaluronan Production Regulates Metabolic and Cancer Stem-like Properties of Breast Cancer Cells via Hexosamine Biosynthetic Pathway-coupled HIF-1 Signaling. J. Biol. Chem. 2016; 291 (46): 4105–20. https://doi.org/10.1074/jbc.M116.751263.
  38. 38. Ma L., Dong L., Chang P. CD44v6 engages in colorectal cancer progression. Cell Death Dis. 2019; 10 (1): 30. https://doi.org/10.1038/s41419-018-1265-7.
  39. 39. Kim Y., Lee S., Shim S., Kim A., Park J., Jang W., Lee S., Myung J., Park S. Hyaluronic acid synthase 2 promotes malignant phenotypes of colorectal cancer cells through transforming growth factor beta signaling. Cancer Sci. 2019; 110: 2226–36. https://doi.org/10.1111/cas.14070.
  40. 40. Su J., Wu S., Wu H., Li L., Guo T. CD44 is functionally crucial for driving lung cancer stem cells metastasis through Wnt/β-catenin-FoxM1-Twist signaling. Mol Carcinog. 2016; 55 (12): 1962–73. http://dx.doi.org/10.1002/mc.22443.
  41. 41. Godar S., Weinberg R. Filling the mosaic of p53 actions: p53 represses RHAMM expression. Cell Cycle. 2008; 7 (22): 3479. https://doi.org/10.4161/cc.7.22.7320.
  42. 42. Dhar D., Antonucci L., Nakagawa H., Kim J., Glitzner E., Caruso S., Karin M. Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling. Cancer Cell. 2018; 33 (6): 1061–77. https://doi.org/10.1016 / j.ccell.2018.05.003.
  43. 43. Buttermore S.T., Hoffman M.S., Kuar A., Champeaux A., Nicosia S.V., Kruk P.A. Increased RHAMM expression relates to ovarian cancer progression. J. Ovarian. Res. 2017; 27, 10 (1): 66. https://doi.org/10.1186/s13048-017-0360-1.
  44. 44. Maxwell C.A., McCarthy J., Turley E. Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J. Cell Sci. 2008; 121 (Pt 7): 925–32. https://doi.org/10.1242/jcs.022038.
  45. 45. Subramaniam K., Omar I., Kwong S., Mohamed Z., Woo Y., Mat Adenan N., Chung I. Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway. Am. J. Cancer Res. 2016; 6 (2): 200–13. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859653.
  46. 46. Alekseev S.B., Bojkov P.Ja., Ebralidze L.K., Stepanova L.G. Posledovatel'nost' aktivatsii matrichnyh sintezov v normal'nyh i transformirovannyh kletkah cheloveka posle sinhronizatsii dvojnym timidinovym blokom. Biohimija. 1985; 50 (12): 1957–63. [Alekseev S.B., Bojkov P.YA., Ebralidze L.K., Stepanova L.G. Sequence of activation of matrix syntheses in normal and transformed human cells after synchronization by a double thymidine block. Biohimiya. 1985; 50 (12): 1957–63 (in Russian)]
  47. 47. Spencer V.A. Acting towards a deeper understanding of the relationship between tissue context, cellular function and tumorigenesis. Cancers (Basel). 2011; 3: 4269. http://dx.doi.org/10.3390/cancers3044269.
  48. 48. Nam K., Oh S., Lee K.M., Yoo S.A., Shin I. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal. 2015; 27 (9): 1882–94. http://dx.doi.org/10.1016/j.cellsig.2015.05.002.
  49. 49. Nikitovic D., Tzardi M., Berdiaki A., Tzanakakis G..N. Cancer microenvironment and inflammation: role of hyaluronan. Front Immunol. 2015; 6: 169–72. https://doi.org/10.3389/fimmu.2015.00169.