CHANGES IN PROTEIN EXPRESSION OF RAT ASTROCYTES CO-CULTURED WITH C6 GLIOMA CELLS

DOI: https://doi.org/10.29296/24999490-2020-05-09

A.S. Silantyev(1), I.V. Chekhonin(2), A.A. Chernysheva(2), O.I. Gurina(2), S.A. Pavlova(3), G.V. Pavlova(3, 4, 5), T.A. Savelieva(6, 7), V.B. Loshhenov(6, 7), V.P. Chekhonin(2, 8) 1-National Scientific Research Center on Addictions a branch of the V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Maly Mogiltsevsky by-street, 3, Moscow, 119002, Russian Federation; 2V-.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Kropotkinskiy by-street, 23, Moscow, 119034, Russian Federation; 3-Institute of Gene Biology Russian Academy of Sciences, Vavilova Street, 34/5, Moscow, 119334, Russian Federation; 4-Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Street, 8, Moscow, 119991, Russian Federation; 5-N.N. Burdenko National Medical Research Center of Neurosurgery, 4 Tverskaya-Yamskaya str., 16, Moscow, 125047, Russian Federation; 6-Prokhorov General Physics Institute, Vavilova str., 38, Moscow, 119991, Russian Federation; 7-National Research Nuclear University, Moscow Engineering Physics Institute, Kashirskoe Highway, 31, Moscow, 115409, Russian Federation; 8-Pirogov Russian National Research Medical University, Ostrovitianova str., 1, Moscow, 117997, Russian Federation E-mail: [email protected]

Introduction. Based on current literature data, it is possible to assume that when exposed to glioma cells astrocytes, may undergo a reactive transformation. These glioma-conditioned astrocytes might create a permissive environment for tumorigenesis. The aim of the study. To investigate the effects of glioma cells on astrocytes in co-culture. Methods. In terms of the current work, we conducted a pairwise comparison of protein levels between C6 glioma cells, native rat astrocytes, and glioma-conditioned rat astrocytes. The samples were prepared and analyzed with liquid chromatography–high-resolution mass spectrometry. Results. The analysis showed a significant difference in 162 proteins between glioma cells and native astrocytes, in 141 proteins between glioma cells and glioma-conditioned astrocytes and 70 proteins between glioma-conditioned and native astrocytes. Conclusion. The differences in protein levels between native and glioma-conditioned astrocytes show a high correlation with differences between glioma cells and native astrocytes.
Keywords: 
reactive astrocytes, glioma C6, proteomics, mass spectrometry

Список литературы: 
  1. Charles N.A., Holland E.C., Gilbertson R., Glass R., Kettenmann H. The brain tumor microenvironment. Glia. 2012; 60 (3): 502–14. https://doi.org/10.1002/glia.21264
  2. Zamanian J.L., Xu L., Foo L.C., Nouri N., Zhou L., Giffard R.G., Barres B.A. Genomic analysis of reactive astrogliosis. J. Neurosci. 2012; 32 (18): 6391–410. https://doi.org/10.1523/jneurosci.6221-11.2012
  3. Placone A.L., Quinones-Hinojosa A., Searson P.C. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol. 2015. https://doi.org/10.1007/s13277-015-4242-0
  4. Lu P., Wang Y., Liu X., Wang H., Zhang X., Wang K., Wang Q.,Hu R. Malignant gliomas induce and exploit astrocytic mesenchymal-like transition by activating canonical Wnt/beta-catenin signaling. Med Oncol. 2016; 33 (7): 66. https://doi.org/10.1007/s12032-016-0778-0
  5. Biasoli D., Sobrinho M.F., da Fonseca A.C., de Matos D.G., Romao L., de Moraes Maciel R., Rehen S.K., Moura-Neto V., Borges H.L.,Lima F.R. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy. Oncogenesis. 2014; 3: 123. https://doi.org/10.1038/oncsis.2014.36
  6. Baklaushev V.P., Yusubalieva G.M., Tsitrin E.B., Gurina O.I., Grinenko N.P., Victorov I.V.,Chekhonin V.P. Visualization of Connexin 43-positive cells of glioma and the periglioma zone by means of intravenously injected monoclonal antibodies. Drug Deliv. 2011; 18 (5): 331–7. https://doi.org/10.3109/10717544.2010.549527
  7. Suk K. Proteomic analysis of glioma chemoresistance. Curr Neuropharmacol. 2012; 10 (1): 72–9. https://doi.org/10.2174/157015912799362733
  8. Deighton R.F., McGregor R., Kemp J., McCulloch J., Whittle I.R. Glioma pathophysiology: insights emerging from proteomics. Brain Pathol. 2010; 20 (4): 691–703. https://doi.org/10.1111/j.1750-3639.2010.00376.x
  9. Koncarevic S., Urig S., Steiner K., Rahlfs S., Herold-Mende C., Sueltmann H., Becker K. Differential genomic and proteomic profiling of glioblastoma cells exposed to terpyridineplatinum (II) complexes. Free Radic Biol Med. 2009; 46 (8): 1096–108. https://doi.org/10.1016/j.freeradbiomed.2009.01.013
  10. Khalil A.A. Biomarker discovery: a proteomic approach for brain cancer profiling. Cancer Sci. 2007; 98 (2): 201–13. https://doi.org/10.1111/j.1349-7006.2007.00374.x
  11. Han M.Z., Xu R., Xu Y.Y., Zhang X., Ni S.L., Huang B., Chen A.J., Wei Y.Z., Wang S., Li W.J., Zhang Q., Li G., Li X.G., Wang J. TAGLN2 is a candidate prognostic biomarker promoting tumorigenesis in human gliomas. J. Exp. Clin. Cancer Res. 2017; 36 (1): 155. https://doi.org/10.1186/s13046-017-0619-9
  12. Stifani S. The Multiple Roles of Peptidyl Prolyl Isomerases in Brain Cancer. Biomolecules. 2018; 8 (4). https://doi.org/10.3390/biom8040112