FEATURES OF IRON EXCHANGE IN PATIENTS WITH LUNG TUBERCULOSIS (REVIEW OF LITERATURE)

DOI: https://doi.org/10.29296/24999490-2020-06-04

E.A. Borodulina, E.V. Yakovleva Department of Phthisiology and Pulmonology, Samara State Medical University, Ministry of Health of the Russian Federation, Chapaevskaya str., 89, Samara, 443099, Russian Federation E-mail: [email protected]

Iron is an essential trace element not only for the human body, but also for some microorganisms, including mycobacterium tuberculosis. Being strict aerobes, mycobacteria receive iron from the human body using the siderophore transporter system. Iron deficiency is the most common micronutrient deficiency. A healthy person contains an average of 3–5 grams of iron, which plays a key role in many metabolic processes. At the cellular level, iron is necessary for the functioning of enzymes involved in the biosynthesis of nucleic acids, the depletion of the intracellular iron pool leads to cell apoptosis. More than 20 proteins involved in the metabolism of iron and the maintenance of its homeostasis have been described. The most important are transferrin and its receptors, ferritin, ferroportin and other transporter proteins, ferroxidases. According to the literature, patients with tuberculosis are characterized by the development of anemia of chronic diseases and an increase in the level of hepcidin, as well as ferritin and lactoferrin in the blood serum. The problem of the effect of mycobacteria on the indicators of iron metabolism in the human body remains insufficiently studied and relevant, since the identification of the processes of iron production and assimilation by mycobacteria that remain unknown will open up the possibility of influencing these processes in order to develop new methods for treating tuberculosis patients.
Keywords: 
mycobacterium, iron, ferritin, hepcidin

Список литературы: 
  1. Khare G., Nangpal P., Tyagi A.K. Differential Roles of Iron Storage Proteins in Maintaining the Iron Homeostasis in Mycobacterium tuberculosis. PLoS One. 2017; 6 (1): 90–8. https://doi.org/10.1371/journal.pone.0169545.
  2. Isanaka S., Mugusi F., Urassa W., Willett W.C., Bosch R.J., Villamor E. Iron deficiency and anemia predict mortality in patients with tuberculosis. J. Nutr. 2012; 142 (2): 350–7. https://doi.org/10.3945/jn.111.144287
  3. Minchella P.A., Donkor S., McDermid J.M., Sutherland J.S. Iron homeostasis and progression to pulmonary tuberculosis disease among household contacts. Tuberculosis (Edinb). 2015; 95 (3): 288–93. https://doi.org/10.1016/j.tube
  4. Kerkhoff A.D., Meintjes G., Burton R., Vogt M., Wood R., Lawn S.D. Relationship between blood concentrations of hepcidin and anemia severity, mycobacterial burden, and mortality among patients with HIV-associated tuberculosis. InfectDis. 2016; 213 (1): 61–70. https://doi.org/10.1093/infdis/jiv364
  5. Oliveira M.G., Delogo K.N., Oliveira H.M., Ruffino-Netto A., Kritski A.L., Oliveira M.M. Anemia in hospitalized patients with pulmonary tuberculosis. BrasPneumol. 2014; 40 (4): 403–10. https://doi.org/10.1590/s1806-37132014000400008
  6. Soares M.P., Hamza I. Macrophages and iron metabolism. Immunity. 2016; 44 (3): 492–504. https://doi.org/10.1016/j.immuni.2016.02.016
  7. Lee S.W., Kang Y.A., Yoon Y.S., Um S.W., Lee S.M., Yoo C.G. The prevalence and evolution of anemia associated with tuberculosis. J. Korean Med Sci. 2006; 21 (6): 1028–32. https://doi.org/10.3346/jkms.2006.21.6.1028
  8. Kuznetsov I.A., Rasulov M.M., Iskakova Zh.T. Zhelezosoderzhaschie belki – laktoferrin i ferritin – v biologicheskih sredah bol'nyh tuberkulezom legkih. Bjulleten' eksperimental'noj biologii i meditsiny. 2012; 154 (11): 572–6.[Kuznecov I.A., Rasulov M.M., Iskakova ZH.T. Iron-containing proteins – lactoferrin and ferritin – in biological media of patients with pulmonary tuberculosis. Byulleten’ eksperimental’noj biologii i mediciny. 2012; 154 (11): 572–6 (in Russian)]
  9. Demihov V.G., Injakova N.V., Kravtsova N.B., Smirnova T.A., Dolzhenko E.N., Morschakova E.F. Ispol'zovanie rekombinantnogo eritropoetina dlja lechenija anemii pri tuberkuleze legkih (pilotnoe issledovanie). Tuberkulez i bolezni legkih. 2011; 88 (11): 26–30.[Demihov V.G., Inyakova N.V., Kravcova N.B., Smirnova T.A., Dolzhenko E.N., Morshchakova E.F. Use of recombinant erythropoietin for the treatment of anemia in pulmonary tuberculosis (pilot study). Tuberkulez i bolezni legkih. 2011; 88 (11): 26–30 (in Russian)]
  10. Abreu R., Quinn F., Giri P.K. Role of the hepcidin-ferroportin axis in pathogen-mediated intracellular iron sequestration in human phagocytic cells. Blood Adv. 2018; 22 (10): 1089–100. https://doi.org/10.1182/bloodadvances.2017015255.
  11. Sritharan M. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake. J. Bacteriol. 2016; 2: 18–22. https://doi.org/10.1128/JB.00359-16
  12. Obuhova L.M., Aliev A.V., Evdokimov I.I., Shprykov A.S., Korobov A.A. Makro- i mikroelementy plazmy krovi pri tuberkuleze legkih. Nauka molodyh – Eruditio Juvenium. 2017; 5 (3): 370–81. https://doi.org/10.23888/HMJ20173370-381[Obuhova L.M., Aliev A.V., Evdokimov I.I., SHprykov A.S., Korobov A.A. Macro- and microelements of blood plasma in pulmonary tuberculosis. Nauka molodyh – EruditioJuvenium. 2017; 5 (3): 370–81 https://doi.org/10.23888/HMJ20173370-381 (in Russian)]
  13. Borodulina E.A., Skoptsova N.V., Borodulin B.E., Amosova E.A., Povaljaeva L.V. Slozhnosti diagnostiki tuberkuleza. Vrach. 2018; 29 (2): 30–2.[Borodulina E.A., Skopcova N.V., Borodulin B.E., Amosova E.A., Povalyaeva L.V. Difficulties in diagnosing tuberculosis. Vrach. 2018; 29 (2): 30–2 (in Russian)]
  14. Drakesmith H., Prentice A.M.. Hepcidin and the iron-infection axis. Science. 2012; 338: 768–772. https://doi.org/10.1126/science.1224577
  15. Javaheri-Kermani M., Farazmandfar T., Ajami A., Yazdani Y. Scand. Impact of hepcidin antimicrobial peptide on iron overload in tuberculosis patients. J. Infect. Dis. 2014; 46 (10): 693–6. https://doi.org/10.3109/00365548.2014.929736.
  16. Sahiratmadja E., Wieringa F.T., van Crevel R., de Visser A.W., Adnan I., Alisjahbana B. Iron deficiency and NRAMP1 polymorphisms (INT4, D543N and 3’UTR) do not contribute to severity of anaemia in tuberculosis in the Indonesian population. Br. J. Nutr. 2007; 98 (4): 684–90. https://doi.org/10.1017/S0007114507742691.
  17. Cassat J.E., Skaar E.P. Iron in infection and immunity. Cell Host Microbe. 2013; 13 (5): 509–19. https://doi.org/10.1016/j.chom.2013.04.010
  18. Blindar' V.N., Zubrihina G.N., Matveeva I.I. Anemicheskij sindrom i osnovnye metabolity ferrokinetiki (ferritin, rastvorimyj retseptor transferrina, progepsidin, gepsidin-25 i endogennyj eritropoetin). Meditsinskij alfavit. 2015; 2 (8): 16–9.[Blindar’ V.N., Zubrihina G.N., Matveeva I.I. Anemic syndrome and major metabolites of ferrokinetics (ferritin, soluble transferrin receptor, prohepcidin, hepcidin-25 and endogenous erythropoietin). Medicinskij alfavit. 2015; 2 (8): 16–9 (in Russian)]
  19. Vdoushkina E.S., Borodulina E.A., Kalinkin A.V., Rogozhkin P.V. Tuberkulez u bol'nyh VICh-infektsiej v regione s vysokim rasprostraneniem VICh. Tuberkulez i bolezni legkih. 2018; 96 (12): 64–5. https://doi.org/10.21292/2075-1230-2018-96-12-64-65[Vdoushkina E.S., Borodulina E.A., Kalinkin A.V., Rogozhkin P.V. Tuberculosis in HIV patients in a region with high HIV prevalence. Tuberkulez i bolezni legkih. 2018; 96 (12): 64–5. https://doi.org/10.21292/2075-1230-2018-96-12-64-65 (in Russian)]
  20. Malysheva O.K., Andrzhejuk N.I., Fokeeva I.N., Molodyk A.A. Sposob differentsial'noj diagnostiki tuberkuleza legkih. Patent na izobretenie RUS 2027191 29.12.1990.[Malysheva O.K., Andrzheyuk N.I., Fokeeva I.N., Molodyk A.A. Method for differential diagnosis of pulmonary tuberculosis. Invention patent RUS 2027191 29.12.1990 (in Russian)]
  21. Injakova N.V., Demihov V.G., Morschakova E.F., Dolzhenko E.N., Zujkova G.I. Sostojanie obmena zheleza i immunnyj status u detej s tuberkulezom vnutrigrudnyh limfaticheskih uzlov. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2005; 4 (2): 82–5.[Inyakova N.V., Demihov V.G., Morshchakova E.F., Dolzhenko E.N., Zujkova G.I. Iron metabolism and immune status in children with tuberculosis of the intrathoracic lymph nodes. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2005; 4 (2): 82–5 (in Russian)]
  22. Majorova M.O., P'janzova T.V. Osobennosti gemogrammy u lits s tuberkulezom na fone VICh-infektsii. Tuberkulez i bolezni legkih. 2015; 4 (4): 49–53. https://doi.org/10.21292/2075-1230-2015-0-4-49-53[Majorova M.O., P’yanzova T.V. Features of the hemogram in persons with tuberculosis on the background of HIV infection. Tuberkulez i bolezni legkih. 2015; 4 (4): 49–53. https://doi.org/10.21292/2075-1230-2015-0-4-49-53 (in Russian)]
  23. Injakova N.V., Demihov V.G., Efimov E.A., Samohina T.A., Morschakova E.F. Costojanie eritropoeza pri anemijah u detej s tuberkuleznoj infektsiej. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2012; 11 (1): 5–8.[Inyakova N.V., Demihov V.G., Efimov E.A., Samohina T.A., Morshchakova E.F. The state of erythropoiesis in anemia in children with tuberculosis infection. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2012; 11 (1): 5–8 (in Russian)]
  24. Roberts P.D., Hoffbrand A.V., Mollin D.L. Iron and folate metabolism in tuberculosis. BrMed J. 2006; 7:198–202. https://doi.org/10.1136/bmj.2.5507.198.
  25. D’Souza B., Sinha S., Manjrekar P., D’Souza V. Hyperferritinemia in pulmonary tuberculosis. Indian J. Clin Biochem. 2013; 28 (3): 309–10. https://doi.org/10.1007/s12291-012-0289-5.
  26. Puxeddu E., Comandini A., Cavalli F., Pezzuto G., D’Ambrosio C., Senis L. Iron laden macrophages in idiopathic pulmonary fibrosis: the telltale of occult alveolar hemorrhage? PulmPharmacolTher. 2014; 28 (1): 35–40. https://doi.org/10.1016/j.pupt.2013.12.002
  27. Zenkov N.K., Chechushkov A.V., Kozhin P.M., Kolpakova T.A., Men'schikova E.B. Makrofag i mikobakterija: vojna bez nachala i kontsa. Uspehi sovremennoj biologii. 2015; 135 (6): 554–74.[Zenkov N.K., CHechushkov A.V., Kozhin P.M., Kolpakova T.A., Men’shchikova E.B. Macrophage and mycobacterium: a war without beginning and end. Uspekhi sovremennoj biologii. 2015; 135 (6): 554–74 (in Russian)]
  28. Os'kin D.N., Varnavskij A.N. Harakter vlijanija tuberkuleza i gepatita na nekotorye gematologicheskie pokazateli. Zemskij vrach. 2017; 1: 31–3.[Os’kin D.N., Varnavskij A.N. The nature of the influence of tuberculosis and hepatitis on some hematological parameters. Zemskij vrach. 2017; 1: 31–3 (in Russian)]
  29. Ljamin A.V., Haliulin A.V., Ismatullin D.D., Kozlov A.V., Baldina O.A. Zhelezo kak essentsial'nyj faktor rosta mikobakterij. Izvestija Samarskogo nauchnogo tsentra Rossijskoj akademii nauk. 2016; 18 (5): 320–7.[Lyamin A.V., Haliulin A.V., Ismatullin D.D., Kozlov A.V., Baldina O.A. Iron as an essential growth factor for mycobacteria. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2016; 18 (5): 320–7 (in Russian)]
  30. Visser A., van de Vyver A. Severe hyperferritinemia in Mycobacteria tuberculosis infection. Clin Infect Dis. 2011; 52 (2): 273–4. https://doi.org/10.1093/cid/ciq126.
  31. Thom R.E., Elmore M.J., Williams A., Andrews S.C., Drobniewski F., Marsh P.D., Tree J.A. The expression of ferritin, lactoferrin, transferrin receptor and solute carrier family 11A1 in the host response to BCG-vaccination and Mycobacterium tuberculosis challenge. Vaccine. 2012; 30 (21): 3159–68. https://doi.org/10.1016/j.vaccine.2012.03.008.
  32. Domingo-Gonzalez R., Prince O., Cooper A., Khader S.A. Cytokines and chemokines in Mycobacterium tuberculosis infection. MicrobiolSpectr. 2016; 4 (5): 1–7. https://doi.org/10.1128/microbiolspec.TBTB2-0018-2016
  33. Dobin V.L., Demihov V.G., Zharikova M.P. Obmen zheleza u mikobakterij. Tuberkulez i bolezni legkih. 2016; 94 (7): 6–10. https://doi.org/10.21292/2075-1230-2016-94-7-6-10[Dobin V.L., Demihov V.G., ZHarikova M.P. Iron exchange in mycobacteria. Tuberkulez i bolezni legkih. 2016; 94 (7): 6–10. https://doi.org/10.21292/2075-1230-2016-94-7-6-10 (in Russian)]
  34. Reddy V.P., Chinta K.C., Saini V., Glasgow J.N., Hull T.D., Traylor A., Rey-Stolle F., Soares M.P., Madansein R., Rahman M.A., Barbas C., Nargan K., Naidoo T., Ramdial P.K., George J.F., Agarwal A., Steyn A.J.C. Ferritin H Deficiency in Myeloid Compartments Dysregulates Host Energy Metabolism and Increases Susceptibility to Mycobacterium tuberculosis Infection. FrontImmunol. 2018; 3 (9): 86–9. https://doi.org/10.3389/fimmu.2018.00860.