STANDARDIZATION OF THE METHOD OF MULTI-TARGET SINGLE-NUCLEOTIDE ELONGATION FOR MOLECULAR GENETIC STUDY OF CYTOLOGICAL MATERIAL IN THYROID NEOPLASM

DOI: https://doi.org/10.29296/24999490-2020-06-05

P.A. Fedorova, V.D. Nazarov, A.A. Musaelyan, S.V. Lapin, M.E. Boriskova, U.V. Farafonova, V.L. Emanuel Center for Molecular Medicine, Pavlov First Saint-Petersburg State Medical University, Lva Tolstogo str., 6–8, Saint Petersburg, 197022, Russian Federation E-mail: [email protected]

Introduction. Thyroid cancer (TC) is the most prevalent cancer among malignant neoplasms of the organs of the endocrine system. Cytological categories Bethesda III–V of TC are considered to be the most difficult for making a diagnosis. Molecular genetic tests can be a tool to complement routine cytopathological studies. The aim of the study. To develop a panel for detecting point mutations in the cytological material of thyroid tumors using the multi-target single-nucleotide elongation (MSE) method. Materials and methods. The studied group of patients included 52 cases with thyroid neoplasm. Patients were divided into subgroups under Bethesda category IV, V and VI. The first, second, and third subgroup consisted of 24, 7, and 21 patients correspondingly. Cytological material was obtained by fine-needle aspiration biopsy. Genetic testing was carried out using the MSE approach. There were created 3 panels included the most common mutations in thyroid cancer: mutations in the BRAF, KRAS, NRAS, HRAS genes. The obtained results of a postoperative histological examination included 11 samples of papillary thyroid cancer, 9 samples of the follicular variant of papillary cancer and 5 - follicular adenoma. Results. 39% of cytological samples showed mutations. The BRAFV600E mutation was revealed in 29% out of founding aberration, NRASQ61R mutation in 10% of those. To verify the method, there were used positive and negative control samples confirmed by PCR. In all control samples, the results were completely consistent with the molecular genetic study by the MSE method. Conclusion. MSE is a highly sensitive and promising method for the detection of mutations in cytological samples in TC patients
Keywords: 
multi-target single-base elongation (MSE), thyroid cancer, somatic mutation

Список литературы: 
  1. Hay I.D., Thompson G.B., Grant C.S., Bergstralh E.J., Dvorak C.E., Gorman C.A. et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): Temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J. Surg. 2002; 26 (8): 879–85. https://doi.org/10.1007/s00268-002-6612-1
  2. Saiselet M., Floor S., Tarabichi M., Dom G., Hebrant A., van Staveren W.C.G. et al. Thyroid cancer cell lines: An overview. Front Endocrinol (Lausanne). 2012; 3: 1–9. https://doi.org/10.3389/fendo.2012.00133
  3. Haugen B.R., Alexander E.K., Bible K.C., Doherty G.M., Mandel S.J., Nikiforov Y.E. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid [Internet]. 2016; 26 (1): 1–133. https://doi.org/10.1089/thy.2015.0020
  4. Xing M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Medicine. 2016. https://doi.org/10.1089/thy.2015.0020
  5. Fernández-Ramirez F., Hurtado-López L.M., López M.A., Martinez-Peñafiel E., Herrera-González N.E., Kameyama L. et al. BRAF 1799T>A Mutation Frequency in Mexican Mestizo Patients with Papillary Thyroid Cancer. Biomed Res Int. 2018; 2018. https://doi.org/10.1155/2018/2582179
  6. Ferrari S.M., Fallahi P., Ruffilli I., Elia G., Ragusa F., Paparo S.R. et al. Molecular testing in the diagnosis of differentiated thyroid carcinomas. Gland Surg. 2018; 7 (S1): 19–29. https://doi.org/10.21037/gs.2017.11.07
  7. Kim W.W., Ha T.K., Bae S.K. Clinical implications of the BRAF mutation in papillary thyroid carcinoma and chronic lymphocytic thyroiditis. J. Otolaryngol – Head Neck Surg. 2018; 47 (1): 1–6. https://doi.org/10.1186/s40463-017-0247-6
  8. Abrosimov A.Ju. Inkapsulirovannye follikuljarnye opuholi schitovidnoj zhelezy neopredelennogo zlokachestvennogo potentsiala v novoj mezhdunarodnoj gistologicheskoj klassifikatsii. Klinicheskaja i eksperimental'naja tireoidologija, 2018; 13 (4): 9–15. https://doi.org/10.14341/ket9481 [Abrosimov AY. Encapsulated follicular thyroid tumors of uncertain malignant potential in the new international histological classification. Clin. Exp. Thyroidol. 2018; 13 (4): 9–15. https://doi.org/10.14341/ket9481 (in Russian)]
  9. Bogoljubova A.V., Abrosimov A.Ju., Selivanova L.S., Belousov P.V. Gistologicheskaja i molekuljarno-geneticheskaja harakteristika klinicheski agressivnyh variantov papilljarnogo raka schitovidnoj zhelezy. 2019; 81 (1): 46–51. https://doi.org/10.17116/patol20198101146. [Bogolyubova A.V., Abrosimov A.Y, Selivanova L.S, Belousov P.V. Histopathological and molecular genetic characteristics of clinically aggressive variants of papillary thyroid carcinoma. Arkh Patol. 2019; 81 (1): 46–51. https://doi.org/10.17116/patol20198101146 (in Russian)]
  10. Musaeljan A.A., Chistjakov I.V., Nazarov V.D., Lapin S.V., Sogojan M.V., Hal'chitskij S.E., Emanuel' V.L., Lobachevskaja T.V. Akopov A.L. Optimizatsija metoda mul'titargetnoj odnonukleotidnoj elongatsii dlja opredelnija somaticheskih mutatsij pri zlokachestvennyh noovobrazovanijah. Molekuljarnaja meditsina. 2019; 2 (17). https://doi.org/10.29296/24999490-2019-02-06 [Musaelyan A.A., Chistyakov I.V., Nazarov V.D., Lapin S.V., Sogoyan M.V., Khalchitsky S.E., Emanuel V.L., Lobachevskaya T.V., Akopov A.L. Optimization of the method of the multi-target single-base elongation for the detection of somatic mutations in malignancies. Molekulyarnaya Meditsina. 2019; 2 (17). https://doi.org/10.29296/24999490-2019-02-06 (in Russian)]
  11. Pod red. Kaprina A.D., Starinskogo V.V., Petrovoj G.V. Zlokachestvennye novoobrazovanija v rossii v 2017 godu (zabolevaemost' i smertnost'). 2018. [Edited by Kaprin A.D., Starinskiy V.V., Petrova G.V. Zlokachestvennyie novoobrazovaniya v rossii v 2017 godu (zabolevaemost’ i smertnost’). 2018 (in Russian)]
  12. Xie H., Wei B., Shen H., Gao Y., Wang L., Liu H. BRAF mutation in papillary thyroid carcinoma (PTC) and its association with clinicopathological features and systemic inflammation response index (SIRI). Am. J. Transl Res. 2018; 10 (8): 2726–36.
  13. Nikiforov Y.E. Role of Molecular Markers in Thyroid Nodule Management: Then and Now. Endocr Pract [Internet]. 2017; (aop): EP171805.RA. https://doi.org/10.4158/EP171805.RA
  14. Strickland K.C., Eszlinger M., Paschke R., Angell T.E., Alexander E.K., Marqusee E. et al. Molecular Testing of Nodules with a Suspicious or Malignant Cytologic Diagnosis in the Setting of Non-Invasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features (NIFTP). Endocr Pathol. 2018; 29 (1): 68–74. https://doi.org/10.1007/s12022-018-9515-x