MOLECULAR AND GENETIC MARKERS OF SARKOPENIA

DOI: https://doi.org/10.29296/24999490-2021-01-03

A.N. Kucher Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Science, Ushaika Embankment, 10, Tomsk, 634050, Russian Federation Е-mail: [email protected]

Sarcopenia is a progressive and generalized pathology of skeletal muscles of multi-factor nature. The present review focuses on the analysis of molecular genetic markers that may contribute both to sarcopenia risk formation and the variability of diagnostically relevant signs for a given disease. According to GWAS, polymorphic variants of 369 genes are associated with such a diagnostically significant sign for sarcopenia as “muscle mass”. According to information provided in the database «DisGeNet» on sarcopenia-associated genes, and in «Gene Ontology» on genes involved in regulation of muscle atrophy (GO:0014737, GO:0014732, GO:0014736) and muscle regeneration (GO:0014839), 69 genes can be considered as candidate sarcopenia genes. Genes associated with muscle mass and candidate genes for sarcopenia have pleiotropic properties, are involved in the regulation of a wide range of biological processes (including the metabolism of hormones, carbohydrates, lipids, proteins; response to stimuli (sex hormones, nutrients), in the regulation of gene expression , protein/serine kinase activity and MAPK signaling pathway); these genes are associated with multi-factorial diseases that are comorbid with sarcopenia; sensitive or determine the response to drugs, hormones, nutrienes (including creatine, corticosteroids, aldosterone, aldosterone antagonists, metformin, protein. Differences are recorded between healthy individuals and sarcopenia sufferers in the level of DNA methylation and in the level of gene expression (including in muscles), the products of which are involved in metabolic pathways significant for maintaining homeostasis in muscles. The methylation pattern and the level of gene expression is influenced by a wide range of factors, including the age of individuals, their hormonal background, the level of physical activity and the type of physical exercise, the consumption of nutrients. Thus, by now, a wide range of molecular genetic markers have been identified at the genomic, epigenome, and transcriptomic levels, which, along with traditional risk factors (and in interaction with them), can contribute to the risk of developing sarcopenia
Keywords: 
sarcopenia, candidate genes, transcriptome, epigenetic markers, metabolic pathways

Список литературы: 
  1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., Schneider S.M., Sieber C.C., Topinkova E., Vandewoude M., Visser M., Zamboni M.; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48 (1): 16–31. https://doi.org/10.1093/ageing/afy169
  2. Gomes M.J., Martinez P.F., Pagan L.U., Damatto R.L., Cezar M.D.M., Lima A.R.R., Okoshi K., Okoshi M.P. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017; 8 (12): 20428–40. https://doi.org/10.18632/oncotarget.14670
  3. Melouane A., Ghanemi A., Yoshioka M., St-Amand J. Functional genomics applications and therapeutic implications in sarcopenia. Mutat Res. 2019; 781: 175–85. https://doi.org/10.1016/j.mrrev.2019.04.003
  4. Sgrò P., Sansone M., Sansone A., Sabatini S., Borrione P., Romanelli F., Di Luigi L. Physical exercise, nutrition and hormones: three pillars to fight sarcopenia. Aging Male. 2019; 22 (2): 75–88. https://doi.org/10.1080/13685538.2018.1439004
  5. Tan L.J., Liu S.L., Lei S.F., Papasian C.J., Deng H.W. Molecular genetic studies of gene identification for sarcopenia. Hum Genet. 2012; 131 (1): 1–31. https://doi.org/10.1007/s00439-011-1040-7
  6. Korostishevsky M., Steves C.J., Malkin I., Spector T., Williams F.M., Livshits G. Genomics and metabolomics of muscular mass in a community-based sample of UK females Genomics and metabolomics of muscular mass in a community-based sample of UK females. Eur J Hum Genet. 2016; 24 (2): 277–83. https://doi.org/10.1038/ejhg.2015.85
  7. Garatachea N., Lucia A. Genes, physical fitness and ageing. Ageing Res Rev. 2013; 12 (1): 90–102. https://doi.org/10.1016/j.arr.2012.09.003
  8. Zhai G., Ding C., Stankovich J., Cicuttini F., Jones G. The genetic contribution to longitudinal changes in knee structure and muscle strength: a sibpair study. Arthritis Rheum. 2005; 52 (9): 2830–4. https://doi.org/10.1002/art.21267
  9. GWAS Catalog – EMBL-EBI. [Elektronnyj resurs] URL: https://www.ebi.ac.uk/gwas/ (data obraschenija – nojabr' 2019 g.).
  10. He L., Khanal P., Morse C.I., Williams A., Thomis M. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle. 2019; 10 (6): 1295–306. https://doi.org/10.1002/jcsm.12478
  11. The Gene Ontology (GO) knowledgebase [Elektronnyj resurs] URL: http://geneontology.org/ (data obraschenija – mart 2020 g.).
  12. Protein knowledgebase UniProtKB. [Elektronnyj resurs] URL: https://www.uniprot.org/ (data obraschenija – janvar' 2020 g.).
  13. DisGeNET Database 6.0. [Elektronnyj resurs] URL: https://www.disgenet.org/ (data obraschenija – janvar' 2020 g.).
  14. The PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System [Elektronnyj resurs] http://www.pantherdb.org/ (data obraschenija mart 2020 g.)
  15. Wang J., Vasaikar S., Shi Z., Greer M., Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017; 45 (1): 130–7. https://doi.org/10.1093/nar/gkx356
  16. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt). [Elektronnyj resurs]. Dr. Bing Zhang’s Lab at the Baylor College of Medicine. 2005 [updated 2019] URL: http://www.webgestalt.org/ (data obraschenija dekabr' 2019 g.)
  17. Lu Y., Karagounis L.G., Ng T.P., Carre C., Narang V., Wong G., Tan C.T.Y., Zin Nyunt M.S., Gao Q., Abel B., Poidinger M., Fulop T., Bosco N., Larbi A. Systemic and metabolic signature of sarcopenia in Community-Dwelling Older Adults. J. Gerontol A Biol. Sci Med Sci. 2020; 75 (2): 309–17. https://doi.org/10.1093/gerona/glz001
  18. Lustgarten M.S., Price L.L., Phillips E.M., Kirn D.R., Mills J., Fielding R.A. Serum predictors of percent lean mass in young adults. J Strength Cond Res. 2016; 30 (8): 2194–201. https://doi.org/10.1519/JSC.0b013e31829eef24
  19. Online Mendelian Inheritance in Man [Elektronnyj resurs] URL: https://www.omim.org/ (data obraschenija – aprel' 2020 g.)
  20. Deepa S.S., Van Remmen H., Brooks S.V., Faulkner J.A., Larkin L., McArdle A., Jackson M.J., Vasilaki A., Richardson A. Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice. Free Radic Biol. Med. 2019; 132: 19–23. https://doi.org/10.1016/j.freeradbiomed.2018.06.032
  21. Medvedev N.V., Gorshunova N.K. Vozrast-assotsiirovannaja sarkopenija kak faktor riska razvitija miokardial'noj disfunktsii i hronicheskoj serdechnoj nedostatochnosti u bol'nyh pozhilogo vozrasta s arterial'noj gipertenziej. Uspehi gerontologii. 2012; 25 (3): 456–60.
  22. [Medvedev N.V., Gorshunova N.K. Age-related sarcopenia as the risk factor of development myocardial dysfunction and chronic heart failure in elderly patients with arterial hypertension. Advances in Gerontology. Adv Gerontol. 2012; 25 (3): 456–60 (in Russian)]
  23. Tasca G., Lattante S., Marangi G., Conte A., Bernardo D., Bisogni G., Mandich P., Zollino M., Ragozzino E., Udd B., Sabatelli M. SOD1 p.D12Y variant is associated with ALS/distal myopathy spectrum. Eur. J. Neurol. 2020; 10.1111/ene.14246. https://doi.org/10.1111/ene.14246
  24. Ding F., Dokholyan N.V. Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proc Natl Acad Sci USA. 2008; 105 (50): 19696–701. https://doi.org/10.1073/pnas.0803266105
  25. Skal'nyj A.V., Rudakov I.A. Bioelementy v meditsine. M.: Izdatel'skij dom «ONIKS 21 vek»: Mir, 2004; 272.
  26. Kucher A.N. Gen-sredovye vzaimodejstvija kak osnova formirovanija zdorov'ja. Ekologicheskaja genetika. 2017; 15 (4): 19–32. https://doi.org/ 10.17816/ecogen15419-32
  27. [Kucher A.N. Gene-environment interactions as the basis of health formation. Ekologicheskaya genetika. 2017; 15 (4): 19–32 (in Russian)]
  28. Pacifico J., Geerlings M.A.J., Reijnierse E.M., Phassouliotis C., Lim W.K., Maier A.B. Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis. Exp. Gerontol. 2020; 131: 110801. https://doi.org/10.1016/j.exger.2019.110801
  29. Musumeci G. Sarcopenia and Exercise “The State of the Art”. J. Funct. Morphol. Kinesiol. 2017; 2: 40. https://doi.org/10.3390/jfmk2040040
  30. Cao Y., Zhong M., Zhang Y. Zheng Z., Liu Y., Ni X., Han L., Song M., Zhang W., Wang Z. Presarcopenia is an independent risk factor for carotid atherosclerosis in Chinese population with metabolic syndrome. Diabetes, metabolic syndrome and obesity: targets and therapy. 2020; 13, 81–8. https://doi.org/10.2147/DMSO.S235335
  31. Gur'eva I.V., Onuchina Ju.S., Dymochka M.A., Schelykalina S.P., Begma I.V. Osobennosti sarkopenii i sostava tela na osnovanii bioimpedansometrii u patsientov s saharnym diabetom 2 tipa. Voprosy dietologii. 2017; 7 (3): 11–9. https://doi.org/10.20953/2224-5448-2017-3-11-19.
  32. [Gurieva I.V., Onuchina Y.S., Dymochka M.A., Shchelykalina S.P., Begma I.V. Features of sarcopenia and body composition on the basis of bioimpedance measurements in patients with type 2 diabetes mellitus. Voprosy dietologii. 2017; 7 (3): 11–9 (in Russian)]
  33. Ryan A.J., Ciaraldi T.P., Henry R.R. Myokine Regulation of Insulin Secretion: Impact of Inflammation and Type 2 Diabetes. Front Physiol. 2020; 10: 1608. https://doi.org/10.3389/fphys.2019.01608
  34. Zhu S., Tian Z., Torigoe D., Zhao J., Xie P., Sugizaki T., Sato M., Horiguchi H., Terada K., Kadomatsu T., Miyata K., Oike Y. Aging- and obesity-related peri-muscular adipose tissue accelerates muscle atrophy. PLoS One. 2019; 14 (8): e0221366. https://doi.org/10.1371/journal.pone.0221366
  35. Hansen M. Female hormones: do they influence muscle and tendon protein metabolism? Proc Nutr Soc. 2018; 77 (1): 32–41. https://doi.org/10.1017/S0029665117001951
  36. Collins B.C., Laakkonen E.K., Lowe D.A. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone. 2019; 123: 137–44. https://doi.org/10.1016/j.bone.2019.03.033
  37. Pronsato L., Milanesi L., Vasconsuelo A., La Colla A. Testosterone modulates FoxO3a and p53-related genes to protect C2C12 skeletal muscle cells against apoptosis. Steroids. 2017; 124: 35–45. https://doi.org/10.1016/j.steroids.2017.05.012
  38. Dieli-Conwright C.M., Spektor T.M., Rice J.C., Sattler F.R., Schroeder E.T. Influence of hormone replacement therapy on eccentric exercise induced myogenic gene expression in postmenopausal women. J. Appl Physiol (1985). 2009; 107 (5): 1381–1388. https://doi.org/10.1152/japplphysiol.00590.2009
  39. Montano M., Flanagan J.N., Jiang L., Sebastiani P.., Rarick M., LeBrasseur N.K., Morris C.A., Jasuja R., Bhasin S. Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007; 92 (7): 2793–802. https://doi.org/10.1210/jc.2006-2722
  40. Pollanen E., Ronkainen P.H., Suominen H., Takala T., Koskinen S., Puolakka J., Sipilä S., Kovanen V. Muscular transcriptome in postmenopausal women with or without hormone replacement. Rejuvenation Res. 2007; 10 (4): 485–500. https://doi.org/10.1089/rej.2007.0536
  41. Sato A.Y., Richardson D., Cregor M., Davis H.M., Au E.D., McAndrews K., Zimmers T.A., Organ J.M., Peacock M., Plotkin L.I., Bellido T. Glucocorticoids induce bone and muscle atrophy by tissue-specific mechanisms upstream of E3 ubiquitin ligases. Endocrinology. 2017; 58 (3): 664–77. https://doi.org/10.1210/en.2016-1779
  42. Walsh S., Ludlow A.T., Metter E.J., Ferrucci L., Roth S.M. Replication study of the vitamin D receptor (VDR) genotype association with skeletal muscle traits and sarcopenia. Aging Clin Exp Res. 2016; 28 (3): 435–42. https://doi.org/10.1007/s40520-015-0447-8
  43. Martin E.M., Fry R.C. Environmental influences on the epigenome: exposure- associated DNA methylation in human populations. Annu Rev Public Health. 2018; 39: 309–33. https://doi.org/10.1146/annurev-publhealth-040617-014629
  44. McKay J.A., Mathers J.C. Diet induced epigenetic changes and their implications for health. Acta Physiol (Oxf). 2011; 202 (2): 103–18. https://doi.org/10.1111/j.1748-1716.2011.02278.x
  45. Gensous N., Bacalini M.G., Franceschi C., Meskers C.G.M., Maier A.B., Garagnan P. Age-related DNA methylation changes: potential impact on skeletal muscle aging in humans. Front Physiol. 2019; 10: 996. https://doi.org/10.3389/fphys.2019.00996
  46. Sailani M.R., Halling J.F., Møller H.D., Lee H., Plomgaard P., Pilegaard H., Snyder M.P., Regenberg B. Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle. Sci Rep. 2019; 9 (1): 3272. https://doi.org/10.1038/s41598-018-37895-8
  47. Ter Borg S., de Groot L.C., Mijnarends D.M., de Vries J.H., Verlaan S., Meijboom S., Luiking Y.C., Schols J.M. Differences in nutrient intake and biochemical nutrient status between sarcopenic and nonsarcopenic older adults-results from the Maastricht Sarcopenia Study. J. Am. Med. Dir Assoc. 2016; 17 (5): 393–401. https://doi.org/10.1016/j.jamda.2015.12.015
  48. Majumder A., Behera J., Jeremic N., Tyagi S.C. Hypermethylation: Causes and Consequences in Skeletal Muscle Myopathy. J. Cell Biochem. 2017; 118 (8): 2108–17. https://doi.org/10.1002/jcb.25841
  49. Turner D.C., Seaborne R.A., Sharples A.P. Comparative transcriptome and methylome analysis in human skeletal muscle anabolism, hypertrophy and epigenetic memory. Sci Rep. 2019; 9 (1): 4251. https://doi.org/10.1038/s41598-019-40787-0
  50. Zheng Y., Kong J., Li Q., Wang Y., Li J. Role of miRNAs in skeletal muscle aging. Clin Interv Aging. 2018; 13: 2407–19. https://doi.org/10.2147/CIA.S169202
  51. Rusanova I., Diaz-Casado M.E., Fernández-Ortiz M., Aranda-Martinez P., Guerra-Librero A., Garcia-Garcia F.J., Escames G., Mañas L., Acuña-Castroviejo D. Analysis of Plasma MicroRNAs as Predictors and Biomarkers of Aging and Frailty in Humans. Oxid Med Cell Longev. 2018; 2018: 7671850. https://doi.org/10.1155/2018/7671850
  52. Iannone F., Montesanto A., Cione E., Crocco P., Caroleo M.C., Dato S., Rose G., Passarino G. Expression Patterns of Muscle-Specific miR-133b and miR-206 Correlate with Nutritional Status and Sarcopenia. Nutrients. 2020; 12 (2): pii: E297. https://doi.org/10.3390/nu12020297
  53. He N., Zhang Y.L., Zhang Y., Feng B., Zheng Z., Wang D., Zhang S., Guo Q., Ye H. Circulating MicroRNAs in Plasma Decrease in Response to Sarcopenia in the Elderly. Front Genet. 2020; 11: 167. https://doi.org/10.3389/fgene.2020.00167
  54. Russell A.P. Lamon S., Boon H., Wada S., Güller I., Brown E.L., Chibalin A.V., Zierath J.R., Snow R.J., Stepto N., Wadley G.D., Akimoto T. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J. Physiol. 2013; 591: 4637–53. https://doi.org/10.1113/jphysiol.2013.255695
  55. Margolis L.M., Rivas D.A. Potential role of MicroRNA in the anabolic capacity of skeletal muscle with aging. Exerc Sport Sci Rev. 2018; 46 (2): 86–91. https://doi.org/10.1249/JES.0000000000000147
  56. Camera D.M., Ong J.N., Coffey V.G., Hawley J.A. Selective modulation of microRNA expression with protein ingestion following concurrent resistance and endurance exercise in human skeletal muscle. Front Physiol. 2016; 7: 87. https://doi.org/10.3389/fphys.2016.00087
  57. Margolis L.M., McClung H.L., Murphy N.E., Carrigan C.T., Pasiakos S.M. Skeletal muscle myomiR are differentially expressed by endurance exercise mode and combined essential amino acid and carbohydrate supplementation. Front. Physiol. 2017; 23: 182. https://doi.org/10.3389/fphys.2017.00182
  58. Pattison J.S., Folk L.C., Madsen R.W., Childs T.E., Booth F.W. Transcriptional profiling identifies extensive downregulation of extracellular matrix gene expression in sarcopenic rat soleus muscle. Physiol Genomics. 2003; 15 (1): 34–43. https://doi.org/10.1152/physiolgenomics.00040.2003
  59. Jeong H.O., Park D., Im E., Lee J., Im D.S., Chung H.Y. Determination of the mechanisms that cause sarcopenia through cDNA microarray. J Frailty Aging. 2017; 6 (2): 97–102. https://doi.org/10.14283/jfa.2017.13
  60. Shafiee G., Asgari Y., Soltani A., Larijani B., Heshmat R. Identification of candidate genes and proteins in aging skeletal muscle (sarcopenia) using gene expression and structural analysis. PeerJ. 2018; 6: e5239. https://doi.org/10.7717/peerj.5239
  61. Giresi P.G., Stevenson E.J., Theilhaber J., Koncarevic A., Parkington J., Fielding R.A., Kandarian S.C. Identification of a molecular signature of sarcopenia. Physiol Genomics. 2005; 21 (2): 253–63. https://doi.org/10.1152/physiolgenomics.00249.2004
  62. Byrne C.A., McNeil A.T.., Koh T.J., Brunskill A.F., Fantuzzi G. Expression of genes in the skeletal muscle of individuals with cachexia/sarcopenia: A systematic review. PLoS One. 2019; 14 (9): e0222345. https://doi.org/10.1371/journal.pone.0222345
  63. Shen Y., Zhang R., Xu L., Wan Q., Zhu J., Gu J., Huang Z., Ma W., Shen M., Ding F., Sun H. Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Front Physiol. 2019; 10: 1298. https://doi.org/10.3389/fphys.2019.01298
  64. Yang A., Lv Q., Chen F., Wang Y., Liu Y., Shi W., Liu Y., Wang D. The effect of vitamin D on sarcopenia depends on the level of physical activity in older adults. J. Cachexia Sarcopenia Muscle. 2020. https://doi.org/10.1002/jcsm.12545
  65. Liao Z.Y., Chen J.L., Xiao M.H., Sun Y., Zhao Y.X., Pu D., Lv A.K., Wang M.L., Zhou J., Zhu S.Y., Zhao K.X., Xiao Q. The effect of exercise, resveratrol or their combination on Sarcopenia in aged rats via regulation of AMPK/Sirt1 pathway. Exp Gerontol. 2017; 98: 177–83. https://doi.org/10.1016/j.exger.2017.08.032
  66. Kapilevich L.V., Zakharova A.N., Kabachkova A.V., Kironenko T.A., Dyakova E.Y., Orlov S.N. Changes in the plasma levels of myokines after different physical exercises in athletes and untrained individuals. Human Physiology. 2017; 43 (3): 312–9. https://doi.org/10.1134/S0362119717030070