A.A. Selifonov(1, 2), V.V. Tuchin(1, 3–5) 1-Saratov State University, Astrakhanskaya str,. 83, Saratov, 410012, Russian Federation; 2-Saratov State Medical University, Kazachaya str., 112 B, Saratov, 410012, Russian Federation; 3-Bach Institute of Biochemistry, Research Center of Biotechnology of the RAS, Leninsky prospect, 33, build. 2, Moscow, 119071, Russian Federation; 4-Tomsk State University, Lenin Avenu, 36, Tomsk, 634050, Russian Federation; 5-Institute of Precision Mechanics and Control of the RAS, Rabochaya str., 24, Saratov, 410028, Russian Federation Е-mail: [email protected]

Introduction. Timely diagnosis and a personalized approach to the treatment of diseases is accepted to be one of the most important modern tasks in medicine and in particular, dentistry. The use of pharmaceuticals for the diagnosis and treatment of various diseases is the basis of a new method – theranostics. Biological tissues have a complex multi-component structure; therefore, the diffusion of substances in them is non-linear. The quantitative determination of the permeability of biological membranes for marker agents is an urgent task of medical biophysics. Purpose of the study. In this work, the permeability of the attached pig gingiva is determined concerning an aqueous solution of a thiazine dye, widely used in dentistry – Methylene Blue (MB). Methods. The determination of permeability is based on the calculation of the effective diffusion coefficient of MB into the gingiva tissue in the wavelength range from 200 to 800 nm using diffuse reflection spectroscopy. Using the second Fick law and the Bouguer-Lambert-Beer law, there was obtained an equation to relate the kinetics of the change in effective optical density and the diffusion coefficient of the preparation into biological tissue. Results. For the first time, the permeability of the tissue of the attached pig gingiva was determined for an aqueous MB solution, which was р=(9.91±1.36)·10-7 cm2/s, the effective diffusion coefficient was D=(4.56±0.72)·10-7 cm2/s (n=4) with a thickness of the samples of the gingival mucosa l=0.46±0.09 cm. Conclusion. The results obtained in the work correlate with published data for other biological tissues and can be used in clinical treatment protocols using MB. Since this dye has photosensitizing properties, the results must be taken into account when conducting photodynamic therapy sessions, during both light therapy and diagnostic procedures with the use MB as a marker for pathological areas of the oral mucosa.
gingival permeability, diffusion coefficient, methylene blue, diffuse reflection spectroscopy

Список литературы: 
  1. Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng QJ. Photodynamic Therapy. J. Natl. Cancer Inst. 1998; 90 (12): 889–905.
  2. Pal'tsev M.A., Belushkina N.N., Chaban E.A. 4P-meditsina kak novaja model' zdravoohranenija v Rossijskoj Federatsii. Orgzdrav: novosti, mnenija, obuchenie. 2015; 2 (2): 48–54. [Pal’cev M.A., Belushkina N.N., Chaban E.A.. 4P-medicina kak novaya model’ zdravoohraneniya v Rossijskoj Federacii. Orgzdrav. 2015; 2 (2): 48–54 (in Russian)]
  3. Tuchin V.V. Optika biologicheskih tkanej. Metody rassejanija sveta v meditsinskoj diagnostike, 2-e izdanie. Fizmatlit. 2012; 811. [Tuchin V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics. 3rd edition. Bellingham. WA: SPIE Press. 2015; 866 (in Russian)]
  4. Lashkari S.M., Kariminezhad H., Amani H., Mataji P. Introduction of 5-aminolevulinic acid as a theranostics agent in dentistry. Photodiagnosis and Photodynamic Therapy. 2019; 25: 336–43.
  5. Koushki E., Mohammadabadi F.M., Baedi J., Ghasedi A. The effects of glucose and glucose oxidase on the Uv-vis spectrum of gold nanoparticles: A study on optical biosensor for saliva glucose monitoring. Photodiagnosis and Photodynamic Therapy. 2020; 30: 10171.
  6. Shitomi K., Miyaji N., Miyata S., Sugaya T., Ushijima N., Akasaka T., Kawasaki H. Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite. Photodiagnosis and Photodynamic Therapy. 2020; 30: 101647.
  7. Macedo P.D., Corbi S.T., Oliveira G.J.P., Rodrigues J., Perussi J.R., Rib A.O., Marcantonio R.A.Ch. Hypericin-glucamine antimicrobial photodynamic therapy in the progression of experimentally induced periodontal disease in rats. Photodiagnosis and Photodynamic Therapy. 2019; 25: 43–9.
  8. Wang W., Huang D., Ren J., Li R., Feng Zh., Guan Ch., Bao B., Cai B., Ling J., Zhou Ch. Research Paper Optogenetic control of mesenchymal cell fate towards precise bone regeneration. Theranostics. 2019; 9 (26): 8196–205.
  9. Huang T-Ch., Chen Ch-J., Ding Sh-J., Chen Ch-Ch. Antimicrobial efficacy of methylene blue-mediated photodynamic therapy on titanium alloy surfaces in vitro. Photodiagnosis and Photodynamic Therapy. 2019; 25: 7–16.
  10. Panevin V.Yu., Firsov D.A., Sofronov A.N., Ter-Martirosyan A.L. A digital system of fluorescence visualization for antibacterial photodynamic therapy in dentistry. St. Petersburg Polytechnical University J.: Physics and Mathematics. 2015.
  11. Genina E.A., Titorenko V.A., Belikov A.V., Bashkatov A.N., Tuchin V.V. Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue light-emitting diodes tooth brushing. J. Biomed. Opt. 2015; 20 (12): 128004.
  12. Okamoto S.V., Bussadori S.K., Prates R.A., Costa A.C., Horliana A.S.R.T, Fernandes K.P.S., Motta L.J. Photodynamic therapy for endodontic treatment of primary teeth: A randomized controlled clinical trial. Photodiagnosis and Photodynamic Therapy. 2020; 30: 101732.
  13. Gazhva S.I., Kotunova N.A., Kulikov A.S., Primenenie fotodinamicheskoj terapii v algoritme lechenija erozivno-jazvennoj formy krasnogo ploskogo lishaja slizistoj obolochki rta. Sovremennye problemy nauki i obrazovanija. 2018; 4: 13–5. [Gazhva S.I., Shmatova S.O., Goryacheva T.P., Hudoshin S.V. Clinical efficacy of using different methods of sterilizing periodontal pockets with a diode laser in the treatment of chronic periodontitis of moderate severity. Sovremennye problemy nauki i obrazovaniya. 2014; (6): 1071 (in Russian)]
  14. Belikov A.V., Pushkareva A.E., Skripnik A.V. Teoreticheskie i eksperimental'nye osnovy lazernoj abljatsii biomaterialov. SPb: SPbGU ITMO, 2011; 230. [Belikov A.V., Pushkareva A.E., Skripnik A.V. [Theoretical and experimental bases of laser ablation of biomaterials]. Saint Petersburg: SPbGU ITMO, 2011; 230 (in Russian)]
  15. Giannelli M., Formigli L., Lorenzini L., Bani D. Combined photoablative and photodynamic diode laser therapy as an adjunct to non-surgical periodontal treatment: a randomized split-mouth clinical trial. J. Clin. Periodontol. 2012; 39 (10): 962–70. 051X.2012.01925.x.
  16. Afkhami F., Akbari S., Chiniforush N. Entrococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: An in vitro Study. J. Endod. 2017; 43 (2): 279–82.
  17. Kotyk A., Janacek K. Cell membrane transport. Principles and Techniques. Second edition. Czechoslovakia In collaboration with the Staff of the Laboratory PLENUM PRESS. New York and London, 1974.
  18. Genina E.A., Bashkatov A.N., Chikina E.E., Tuchin V.V. Diffuzija metilenovogo sinego v slizistoj obolochke verhnecheljustnoj pazuhi cheloveka. Biofizika. 2007; 52 (6): 1104–11. [Genina E.A., Bashkatov A.N., Chikina, E.E., Tuchin V.V. Diffusion of Methylene Blue in human maxillary sinus mucosa. Biophysics. 2007; 52 (6): 56–64 (in Russian)].
  19. Borovskij E.V. Terapevticheskaja stomatologija. Uchebnik. MIA. 2003; 246. [Borovskij E.V. Terapevticheskaya stomatologiya. Uchebnik. MIA. 2003; 246 (in Russian)]
  20. Genina E.A., Bashkatov A.N., Tuchin V.V. Issledovanie diffuzii fotodinamicheskogo krasitelja indotsianinovogo zelenogo v kozhe s pomosch'ju spektroskopii obratnogo rassejanija. Kvantovaja elektronika. 2014; 44 (7): 689–95. [Genina, E.A., Bashkatov, A.N., Tuchin, V.V. Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy. Quantum Electronics. 2014; 44 (7): 689–95 (in Russian)]