SORCIN AS A POTENTIAL TARGET IN MOLECULAR DIAGNOSTICS AND TARGETED THERAPY OF LUNG CANCER

DOI: https://doi.org/10.29296/24999490-2021-03-01

E.S. Mironova(1, 2), U.A. Novak-Bobarykina(3), M.A. Pal’cev(4), P.K. Yablonskiy(1), E.G. Sokolovich(1), I.M. Kvetnoy(1, 3) 1-St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, Russian Federation, 191036, St. Petersburg, Ligovsky prospect, 2–4; 2-St. Petersburg Institute of Bioregulation and Gerontology, Russian Federation, 197110, St. Petersburg, Prospect Dynamo, 3; 3-St. Petersburg State University, Russian Federation, 199034, St. Petersburg, Universitetskaya embankment, 7–9; 4-Moscow State University named after M.V. Lomonosov, Russian Federation, 119991, Moscow, Leninskie gory, 1/12. Е-mail: [email protected]

Lung cancer occupies the leading position in at the structure of oncological morbidity in the developed countries. The overall five-year survival rate for lung cancer isn’t exceed to 10–20% even using of the entire modern arsenal of therapeutic methods. Multiple drug resistance is an important aspect of the ineffectiveness of the treatment of lung cancer and it also is an urgent direction in the study of tumors. Pharmacokinetic aspects such as absorption, distribution, metabolism and excretion reduce the amount of chemotherapeutic agent that effectively reaches cancer cells. The development of the drug resistance limits the effectiveness of chemotherapeutic treatment of cancer and a failure rate of the treatment of metastatic tumors becomes more than 90%. Results of the study have shown that the soluble calcium-binding protein sorcin is involved in a development of the multidrug resistance in different types of human tumors. However, the potential molecular mechanism underlying at the ability of sorcin to regulate the development of multidrug resistance in human lung cancer is not complettely understood. There is an urgent need for new therapeutic strategies and further research on the role of sorcin in the development of the multidrug resistance phenotype that will help to identify sorcin as a new diagnostic and therapeutic marker for various types of lung cancer. This review is devoted to the analysis of modern research in this direction.
Keywords: 
sorcin, molecular diagnostics, targeted therapy, lung cancer

Список литературы: 
  1. Bade B.C., Dela Cruz C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin Chest Med. 2020; 41 (1): 1–24. https://doi.org/10.1016/j.ccm.2019.10.001.
  2. Rodriguez-Canales J., Parra-Cuentas E., Wistuba I.I. Diagnosis and Molecular Classification of Lung Cancer. Cancer Treat Res. 2016; 170: 25–46. https://doi.org/10.1007/978-3-319-40389-2_2.
  3. Romaszko A.M., Doboszyńska A. Multiple primary lung cancer: A literature review. Adv Clin Exp Med. 2018; 27 (5): 725–30. https://doi.org/10.17219/acem/68631.
  4. Shabnam B., Padmavathi G., Banik K., Girisa S., Monisha J., Sethi G., Fan L., Wang L., Mao X., Kunnumakkara A.B. Sorcin a Potential Molecular Target for Cancer Therapy. Transl Oncol. 2018; 11 (6): 1379–89. https://doi.org/10.1016/j.tranon.2018.08.015.
  5. Roy N.K., Bordoloi D., Monisha J., Padmavathi G., Kotoky J., Golla R., Kunnumakkara A.B. Specific targeting of Akt kinase isoforms: taking the precise path for prevention and treatment of cancer. Curr Drug Targets. 2017; 18 (4): 421–35.
  6. Padmavathi G., Banik K., Monisha J., Bordoloi D., Shabnam B., Arfuso F., Sethi G., Fan L., Kunnumakkara A.B. Novel tumor necrosis factor-alpha induced protein eight (TNFAIP8/TIPE) family: functions and downstream targets involved in cancer progression. Cancer Lett. 2018; 432: 260–71.
  7. Kim S.I., Lee H.J., Kim S.S., Kwon Y.S., Chun W. Sequestration of sorcin by aberrant forms of tau results in the defective calcium homeostasis. Korean J Physiol Pharmacol. 2016; 20 (4): 387–97.
  8. Meyers M.B., Biedler J.L. Increased synthesis of a low molecular weight protein in vincristine-resistant cells. Biochem Biophys Res Commun. 1981; 99 (1): 228–35.
  9. Mao J., Ling F., Gislaine Pires Sanches J., Yu X., Wei Y., Zhang J. The potential mechanism of action of Sorcin and its interacting proteins. Clin Chim Acta. 2020; 510: 741–5. https://doi.org/10.1016/j.cca.2020.09.011.
  10. Lalioti V.S., Ilari A., O’Connell D.J., Poser E., Sandoval I.V., Colotti G. Sorcin links calcium signaling to vesicle trafficking, regulates Polo-like kinase 1 and is necessary for mitosis. PLoS One. 2014; 9 (1): e85438.
  11. Zhou X., Wu X., Chen B. Sorcin: a novel potential target in therapies of cancers. Cancer Manag Res. 2019; 11: 7327–36. https://doi.org/10.2147/CMAR.S208677.
  12. Genovese I., Ilari A., Assaraf Y.G., Fazi F., Colotti G. Not only P-glycoprotein: Amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat. 2017; 32: 23–46. https://doi.org/10.1016/j.drup.2017.10.003.
  13. Battista T., Fiorillo A., Chiarini V., Genovese I., Ilari A., Colotti G. Roles of Sorcin in Drug Resistance in Cancer: One Protein, Many Mechanisms, for a Novel Potential Anticancer Drug Target. Cancers (Basel). 2020; 12 (4): 887. https://doi.org/10.3390/cancers12040887.
  14. Hu Y., Li S., Yang M., Yan C., Fan D., Zhou Y., Zhang Y., Yagüe E., Xiong D. Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo. Breast Cancer Res Treat. 2014; 143 (2): 287–99. https://doi.org/10.1007/s10549-013-2809-2.
  15. Gao Y., Li W., Liu X., Gao F., Zhao X. Reversing effect and mechanism of soluble resistance-related calcium-binding protein on multidrug resistance in human lung cancer A549/DDP cells. Mol Med Rep. 2015; 11 (3): 2118–24. https://doi.org/10.3892/mmr.2014.2936.
  16. Lei X., Liang Y., Chen J., Xiao S., Lei J., Li J., Duanmu J., Jiang Q., Liu D., Tang C. Sorcin predicts poor prognosis and promotes metastasis by facilitating epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2017; 7 (1): 10049.
  17. Tuo H., Shu F., She S., Yang M., Zou X.Q., Huang J., Hu H.D., Hu P., Ren H., Peng S.F. Sorcin induces gastric cancer cell migration and invasion contributing to STAT3 activation. Oncotarget. 2017; 8 (61): 104258–71.
  18. Gupta K., Sirohi V.K., Kumari S., Shukla V., Manohar M., Popli P., Dwivedi A. Sorcin is involved during embryo implantation via activating VEGF/PI3K/Akt pathway in mice. J Mol Endocrinol. 2018; 60 (2): 119–32. https://doi.org/10.1530/JME-17-0153.
  19. Xu P., Jiang Y.F., Wang J.H. shRNA-mediated silencing of sorcin increases drug chemosensitivity in myeloma KM3/DDP and U266/ADM cell lines. Int J Clin Exp Pathol. 2015; 8 (3): 2300–10.
  20. Genovese I., Fiorillo A., Ilari A., Masciarelli S., Fazi F., Colotti G. Binding of doxorubicin to sorcin impairs cell death and increases drug resistance in cancer cells. Cell Death Dis. 2017; 8 (7): e2950.
  21. Qu Y., Yang Y., Liu B., Xiao W. Comparative proteomic profiling identified sorcin being associated with gemcitabine resistance in non-small cell lung cancer. Med Oncol. 2010; 27 (4): 1303–8. https://doi.org/10.1007/s12032-009-9379-5.
  22. Matsumoto T., Hisamatsu Y., Ohkusa T., Inoue N., Sato T., Suzuki S., Ikeda Y., Matsuzaki M. Sorcin interacts with sarcoplasmic reticulum Ca(2+)-ATPase and modulates excitation-contraction coupling in the heart. Basic Res Cardiol. 2005; 100 (3): 250–62. https://doi.org/10.1007/s00395-005-0518-7.
  23. Demidova N.S., Ilyinskaya G.V., Shiryaeva O.A., Chernova O.B., Goncharova S.A., Kopnin B.P. Decreased sensitivity of multidrug-resistant tumor cells to cisplatin is correlated with sorcin gene co-amplification. Neoplasma. 1995; 42 (4): 195–201.
  24. Zhou Y., Xu Y., Tan Y., Qi J., Xiao Y., Yang C., Zhu Z., Xiong D. Sorcin, an important gene associated with multidrug-resistance in human leukemia cells. Leuk Res. 2006; 30 (4): 469–76.
  25. Padar S., van Breemen C., Thomas D.W., Uchizono J.A., Livesey J.C., Rahimian R. Differential regulation of calcium homeostasis in adenocarcinoma cell line A549 and its Taxol-resistant subclone. Br. J. Pharmacol. 2004; 142: 305–16. https://doi.org/10.1038/sj.bjp.0705755.
  26. Zheng B.B., Zhang P., Jia W.W., Yu L.G., Guo X.L. Sorcin, a potential therapeutic target for reversing multidrug resistance in cancer. J Physiol Biochem. 2012; 68 (2): 281–7. https://doi.org/10.1007/s13105-011-0140-0.
  27. Ilari A., Fiorillo A., Poser E., Lalioti V.S., Sundell G.N., Ivarsson Y., Genovese I., Colotti G. Structural basis of Sorcin-mediated calcium-dependent signal transduction. Sci Rep. 2015; 5: 16828. https://doi.org/10.1038/srep16828.
  28. Aggarwal B.B., Kunnumakkara A.B., Harikumar K.B., Gupta S.R., Tharakan S.T., Koca C., Dey S., Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci. 2009; 1171: 59–76.
  29. Hu Y., Li S., Yang M., Yan C., Fan D., Zhou Y., Zhang Y., Yague E., Xiong D. Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo. Breast Cancer Res Treat. 2014; 143 (2): 287–99.
  30. Tong W., Sun D., Wang Q., Suo J. Sorcin enhances metastasis and promotes epithelial-to-mesenchymal transition of colorectal cancer. Cell Biochem Biophys. 2015; 72 (2): 453–9.
  31. Landriscina M., Laudiero G., Maddalena F., Amoroso M.R., Piscazzi A., Cozzolino F., Monti M., Garbi C., Fersini A., Pucci P. Mitochondrial chaperone Trap1 and the calcium binding protein Sorcin interact and protect cells against apoptosis induced by antiblastic agents. Cancer Res. 2010; 70 (16): 6577–86.
  32. Yamagishi N., Nakao R., Kondo R., Nishitsuji M., Saito Y., Kuga T., Hatayama T., Nakayama Y. Increased expression of sorcin is associated with multidrug resistance in leukemia cells via up-regulation of MDR1 expression through cAMP response element-binding protein. Biochem Biophys Res Commun. 2014; 448 (4): 430–6.
  33. Genovese I., Fiorillo A., Ilari A., Masciarelli S., Fazi F., Colotti G. Binding of doxorubicin to Sorcin impairs cell death and increases drug resistance in cancer cells. Cell Death Dis. 2017; 8: e2950. https://doi.org/10.1038/cddis.2017.342.
  34. Kitada K., Yamasaki T. The MDR1/ABCB1 regional amplification in large inverted repeats with asymmetric sequences and microhomologies at the junction sites. Cancer Genet Cytogenet. 2007; 178 (2): 120–7.
  35. Yabuki N., Sakata K., Yamasaki T., Terashima H., Mio T., Miyazaki Y., Fujii T., Kitada K. Gene amplification and expression in lung cancer cells with acquired paclitaxel resistance. Cancer Genet Cytogenet. 2007; 173 (1): 1–9. https://doi.org/10.1016/j.cancergencyto.2006.07.020.