IMPACT OF WEAKENED GEOMAGNETIC FIELD ON THE ORGANOTYPIC CELL CULTURE OF VARIOUS GENESIS

DOI: https://doi.org/10.29296/24999490-2021-04-08

P.N. Ivanova(1–3), E.S. Zalomaeva(1–3), S.V. Surma(2), N.I. Chalisova(2, 3), O.M. Ivko(3), E.A. Nikitina(1, 2), B.F. Shchegolev(2) 1-The Herzen State Pedagogical University of Russia, nab. Moyki 48, St. Petersburg, 119186, Russian Federation; 2-Pavlov Institute of Physiology, Nab. Makarova 6, St. Petersburg, 199034, Russian Federation; 3-St.Petersburg Institute of Bioregulation and Gerontology, pr. Dinamo, 3, St. Petersburg, 197110, Russian Federation E-mail: [email protected]

Introduction. The investigations of the magnetic-biological effects are actual because of the permanent impact of changing Earth geomagnetic field on the live organisms. Purpose of the study was to investigate the impact of the weakened geomagnetic field (WGF) on the tissues of various genesis – ecto-, meso- and entodermal. The method of organotypic culture of tissues of Wistar line rats was used. Results. WGF stimulates cell proliferation in the mesodermal tissue (spleen, myocardium), whereas without its impact on other tissues under analysis. The WGF impact on the aerobic cells of spleen and myocardium can lead to the accumulation of the oxygen radicals, promoting a cell proliferation. The WGF stimulating effect of bioregulator peptides upon cell proliferation of all tissues, with the exception of myocardium and spleen tissue-specific peptides, was similar to the Earth magnetic field. Conclusion. The data about WGF stimulating effect on the cellular proliferation in myocardium, spleen can be used for creating physiotherapeutic methods of a regeneration increase in these tissues by pathology. The stimulating influence of bioregulator peptides upon all tissues under WGF impact is just the same as it is with the common geomagnetic field. It creates a base to its using under the WGF conditions by the fly in the cosmic space
Keywords: 
weak magnetic field, organotypic culture tissue, bioregulator peptides

Список литературы: 
  1. Stefanov V.E., Krjachko O.V. Spivak i dr. Model'noe issledovanie biologicheskih effektov slabyh staticheskih magnitnyh polej na organizmennom i subkletochnom urovnjah. Doklady AN. 2015; 461 (4): 485–8. [Stefanov V.E., Kryachko O.V., Spivak O.V.et al. Model study of biologic effects of weakened geomagnetic fields at organism and subcellular level. Dokladi AN. 2015; 461 (4): 485–8 (In Russian)]
  2. Havinson V.H., Chalisova N.I., Lin'kova N.S., i dr. Zavisimost' tkanespetsificheskogo dejstvija peptidov ot ih kolichestvennogo aminokislotnogo sostava. Fundamental'nye Issledovanija. 2015; 2: 497–503. [Khavinson V.Kh., Chalisova N.I., Linkova N.S.et al. Dependence of peptide tissue-specific effect from their quantitative amino acid composition. Fundamental studies. 2015; 2: 497–503 (In Russian)]
  3. Kolchina N., Khavinson V., Linkova N., et al. Systematic search for structural motifs of peptide binding to double-stranded DNA Nucleic Acids. Nucleic Acids Research. 2019; 47 (20): 10553–63. DOI: 10.1093/nar/gkz850.
  4. Khavinson V., Micans P., Maryanovich A. Peptides in the Epigenetic Control of Ageing. Great Britain: Profound Health Ltd. 2017.
  5. Gudoshnikov S.A., Grebenschikov Ju.B., Volkov V.T., i dr. Magnitnye i ekranirujuschie svojstva lentochnyh amorfnyh ferromagnitnyh materialov. Pis'ma v ZhTF. 2014; 40 (19): 42–50. [Gudoshnikov S.A., Grebenshchekov J.B., Volkov V.T. et al. Magnetic and screening properties of amorphous ferromagnetic ribbons. Technical Physics Letters. 2014; 40 (19): 42–50 (In Russian)]
  6. Eldashev I.C., Schegolev B.F., Cupma C.V., i dr. Vlijanie slabyh magnitnyh polej na razvitie satellitnyh kletok novorozhdennoj krysy v pervichnoj kul'ture. Biofizika. 2010; 55 (5): 868–74. [Eldashev I.S., Shchegolev B.F., Surma S.V. et al. Influence of low-intensity magnetic fields on the development of satellite muscle cells of a newborn rat in primary culture. Biophysics. 2010; 55 (5): 868–74 (In Russian)]
  7. Spivak I.M., Kuranova M.L., Mavropulo-Stoljarenko G.R. i dr. Kletochnyj otvet na vozdejstvie sverhslabyh staticheskih magnitnyh polej. Biofizika. 2016; 61 (3): 516–22. [Spivak I.M., Kuranova M.L., Mavropulo-Stolyarenko G.R. et al. Cell response to extremely weak static magnetic fields. Biophysics. 2016; 61 (3): 516–22 (In Russian)]
  8. Buchachenko A.L. Magnito-zavisimye molekuljarnye i himicheskie protsessy v biohimii, genetike i meditsine. Uspehi himii. 2014; 83 (1): 1–12. [Buchachenko A.L. Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine. Russian Chemical Reviews. 2014; 83 (1): 1–12 (In Russian)]
  9. Nadeev A.D., Bogdanov V.A., Khmelevskoy D.A., Surma S.V., Stefanov V.E., Jenkins R.O., Goncharov N.V. Effects of exposure of rat erythrocytes to a hypogeomagnetic field. Biomedical Spectroscopy and Imaging. 2018; 17 (3–4): 105–13. DOI: 10.3233/BSI-180181
  10. Deuk-Young N., Moo-Yong R. The Inflammatory Response and Cardiac Repair After Myocardial Infarction. Korean Circ J. 2009; 39 (10): 393–8.
  11. Suzuki Y.J., Forman H.J., Sevanian A. Oxidants as stimulators of signal transduction. Free Rad. Biol. Med. 1997; 22 (1–2): 269–85.
  12. Nikitina E.A., Medvedeva A.V., Gerasimenko M.S., i dr. Oslablennoe magnitnoe pole Zemli: vlijanie na transkriptsionnuju aktivnost' genoma, obuchenie i pamjat' u Dr. Melanogaster. Zhurnal vysshej nervnoj dejatel'nosti im. I.P. Pavlova. 2017; 67 (2): 246–56. [Nikitina E.A., Medvedeva A.V., Gerasimenko M.S. et al. Weakened Geomagnetic Field: Effects on Genomic Transcriptional Activity, Learning, and Memory in Dr. melanogaster. Neuroscience and Behavioral Physiology. 2017; 67 (2): 246–56 (In Russian)]
  13. Nikitina E.A., Kaminskaja A.N., Molotkov D.A. i dr. Vlijanie teplovogo shoka na obuchenie, formirovanie pamjati i soderzhanie LIMK1 v mozge samtsov Drosophila melanogaster s izmenennoj strukturoj gena limk1 . Zhurnal evoljutsionnoj biohimii i fiziologii. 2014; 50 (2): 137–47. [Nikitina E.A., Kamenskaya A.N., Molotkov D.A. et al. Impact of heat stress on the learning, memory formation and LIMK1 content in brain of Drosophila melanogaster mails with modified gen limk1. J. of Evolutionary Biochemistry and Physiology. 2014; 50 (2): 137–47 (In Russian)]
  14. Savvateeva–Popova E.V., Nikitina E.A., Medvedeva A.V. Ot nejrogenetiki k nejroepigenetike. Genetika. 2015; 51 (5): 613–24. [Savvateeva-Popova E.V., Nikitina E.A., Medvedeva A.V. From Neurogenetic to Neuroepigenetic. Genetic. 2015; 51 (5): 613–24 (In Russian)]