A comparison of the protein composition from coronary atherosclerotic plaque at different stages of development

DOI: https://doi.org/10.29296/24999490-2021-05-09

E.M. Stakhneva(1), I.A. Meshcheryakova(2), E.A. Demidov(2), K.V. Starostin(2), E.V. Sadovski(1), S.E. Peltek(2), A.M. Chernyavskii(3), A.M. Volkov(3), A.V. Kurguzov(3), I.S. Murashov(3), Yu.I. Ragino(1), 1-Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova str, 175/1, Novosibirsk, 630089, Russian Federation; 2-Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Academician Lavrentiev str, 10, Novosibirsk, 630090, Russian Federation; 3-The Federal State Budgetary Institution «National Medical Research Center named academician E.N. Meshalkin «of the Ministry of Health of the Russian Federation, Rechkunovskaya str, 15, Novosibirsk, 630055, Russian Federation Е-mail: [email protected]

Background: The aim of this study was to investigate individual changes of protein expression in atherosclerotic plaques of coronary arteries at different stages of development of coronary atherosclerosis. Methods: The research object was homogenates of atherosclerotic plaques from coronary arteries at different stages of development (stable atherosclerotic plaques and unstable necrotic-dystrophic atherosclerotic plaques). The plaque proteins were separated by two-dimensional electrophoresis and the gel images were analyzed using PDQuest software. The amount of protein was determined in relative units of the intensity of staining of protein spots. The identification of protein fractions was based on peptide mass mapping by matrix-activated laser desorption ionization (MALDI). Results: Groups of proteins were identified whose expression differed more than 1.5-fold among the three stages of atherosclerotic-plaque development. At the stage of lipidosis and fibrosis in the stable plaque, the amounts of the following proteins were increased: actins, tubulin, tropomyosin, and keratin. At the fibrosis-and-calcinosis stage of the stable atherosclerotic plaque, we noted upregulation of the following proteins: microfibril-associated glycoprotein 4, mimecan, annexin A5, and peroxiredoxin-2. The unstable-plaque stage of the dystrophic necrotic type was characterized by overexpression of serum albumin, fibrinogen, serum amyloid (P component), and vimentin. Conclusion: Possible patterns of changes in protein expression were founded among three stages of development of atherosclerotic plaques of the coronary arteries when comparing individual gels and pools of homogenates of atherosclerotic plaques.
atherosclerosis, proteomics, mass spectrometry, annexin, peroxiredoxin

Список литературы: 
  1. Dubois E., Fertin M., Burdese J., Amouyel P., Bauters C., Pinet F. Cardiovascular proteomics: translational studies to develop novel biomarkers in heart failure and left ventricular remodeling. Proteomics Clin. Appl. 2011; 5 (1–2): 57–66. https://doi.org/10.1002/prca.201000056
  2. Yin X., Subramanian S., Hwang S.J., O’Donnell C.J., Fox C.S., Courchesne P., Muntendam P., Gordon N., Adourian A., Juhasz P., Larson M.G., Levy D. Protein biomarkers of new-onset cardiovascular disease: prospective study from the systems approach to biomarker research in cardiovascular disease initiative. Arterioscler. Thromb. Vasc. Biol. 2014; 34 (4): 939–45. https://doi.org/10.1161/ATVBAHA.113.302918
  3. Liang W., Ward L.J., Karlsson H., Ljunggren S.A., Li W., Lindahl M., Yuan X.M. Distinctive proteomic profiles among different regions of human carotid plaques in men and women. Sci. Rep. 2016; 6: 26231. https://doi.org/10.1038/srep26231
  4. Malaud E., Merle D., Piquer D., Molina L., Salvetat N., Rubrecht L., Dupaty E., Galea P., Cobo S., Blanc A., Saussine M., Marty-Ané C., Albat B., Meilhac O., Rieunier F., Pouzet A., Molina F., Laune D., Fareh J. Local carotid atherosclerotic plaque proteins for the identification of circulating biomarkers in coronary patients. Atherosclerosis. 2014; 233: 551–8. http://dx.doi.org/10.1016/j.atherosclerosis.2013.12.019
  5. Herrington D.M., Mao C., Parker S.J., Fu Z., Yu G., Chen L., Venkatraman V., Fu Y., Wang Y., Howard T.D., Jun G., Zhao C.F., Liu Y., Saylor G., Spivia W.R., Athas G.B., Troxclair D., Hixson J.E., Vander Heide R.S., Wang Y., Van Eyk J.E. Proteomic Architecture of Human Coronary and Aortic Atherosclerosis. Circulation. 2018; 137 (25): 2741–56. https://doi.org/10.1161/CIRCULATIONAHA.118.034365
  6. Han Y., Zhao S., Gong Y., Hou G., Li X., Li L. Serum cyclin-dependent kinase 9 is a potential biomarker of atherosclerotic inflammation. Oncotarget. 2016; 7 (2): 1854–62. https://doi.org/10.18632/oncotarget.6443
  7. Matyushenko A.M., Koubassova N.A., Shchepkin D.V., Kopylova G.V., Nabiev S.R., Nikitina L.V., Bershitsky S.Y., Levitsky D.I., Tsaturyan A.K. The effects of cardiomyopathy-associated mutations in the head-to-tail overlap junction of α-tropomyosin on its properties and interaction with actin. Int. J. Biol. Macromol. 2019; 125: 1266–74. https://doi.org/10.1016/j.ijbiomac.2018.09.105
  8. Stintzing S., Ocker M., Hartner A., Amann K., Barbera L., Neureiter D. Differentiation patterning of vascular smooth muscle cells (VSMC) in atherosclerosis. Virchows Arch. 2009; 455: 171–85. https://doi.org/10.1007/s00428-009-0800-4
  9. Saavedra P., Girona J., Bosquet A., Guaita S., Canela N., Aragonès G., Heras M., Masana L. New insights into circulating FABP4: Interaction with cytokeratin 1 on endothelial cell membranes. Bioch. Biophys. Acta. 2015; 1853 (11PtA): 2966–74. https://doi.org/10.1016/j.bbamcr.2015.09.002
  10. Kuzuya K., Ichihara S., Suzuki Y., Inoue C., Ichihara G., Kurimoto S., Oikawa S. Proteomics analysis identified peroxiredoxin 2 involved in early-phase left ventricular impairment in hamsters with cardiomyopathy. PLoS One. 2018; 13 (2): e0192624. https://doi.org/10.1371/journal.pone.0192624
  11. Waksman R., Seruys P.W. Handbook of the vulnerable plaque. London: Taylor & Francis Group, 2004; 1–48.
  12. Shah P.K. Cellular and molecular mechanisms of plaque rupture. High-risk atherosclerotic plaques: mechanisms, imaging, models, and therapy. Edited by L.M. Khachigian; New York: CRC Press, 2005; 1–19.
  13. Stakhneva E.M., Meshcheryakova I.A., Demidov E.A., Starostin K.V., Sadovski E.V., Peltek S.E., Voevoda M.I., Chernyavskii A.M., Volkov A.M., RaginoYu.I. A proteomic study of atherosclerotic plaques in men with coronary atherosclerosis. Diagnostics. 2019; 9 (4): 177. https://doi.org/10.3390/diagnostics9040177
  14. Menko A.S., Bleaken B.M., Libowitz A.A., Zhang L., Stepp M.A., Walker J.L. A central role for vimentin in regulating repair function during healing of the lens epithelium. Mol. Biol. Cell. 2014; 25 (6): 776–90. https://doi.org/10.1091/mbc.E12-12-0900
  15. Guo M., Ehrlicher A.J., Mahammad S., Fabich H., Jensen M.H., Moore J.R., Fredberg J.J., Goldman R.D., Weitz D.A. The Role of Vimentin Intermediate Filaments in Cortical and Cytoplasmic Mechanics. Biophys. J. 2013; 105 (7): 1562–8. https://doi.org/10.1016/j.bpj.2013.08.037
  16. Monico A., Duarte S., Pajares M.A., Pérez-Sala D. Vimentin disruption by lipoxidation and electrophiles: Role of the cysteine residue and filament dynamics. Redox Biol. 2019; 101098. https://doi.org/10.1016/j.redox.2019.101098
  17. Hirase T., Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am. J. Physiol. Heart Circ. Physiol. 2012; 302 (3): 499–505. https://doi.org/10.1152/ajpheart.00325.2011
  18. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Front Physiol. 2015; 6: 365. https://doi.org/10.3389/fphys.2015.00365
  19. Zhang H.J., Wang J., Liu H.F., Zhang X.N., Zhan M., Chen F.L. Overexpression of mimecan in human aortic smooth muscle cells inhibits cell proliferation and enhances apoptosis and migration. Exp. Ther. Med. 2015; 10 (1): 187–92. https://doi.org/10.3892/etm.2015.2444
  20. Seki T., Saita E., Kishimoto Y., Ibe S., Miyazaki Y., Miura K., Ohmori R., Ikegami Y., Kondo K., Momiyama Y. Low Levels of Plasma Osteoglycin in Patients with Complex Coronary Lesions. J. Atheroscler. Thromb. 2018; 25 (11): 1149–55. https://doi.org/10.5551/jat.43059
  21. Stohr R., Schurgers L., van Gorp R., Jaminon A., Marx N., Reutelingsperger C. Annexin A5 reduces early plaque formation in ApoE-/-mice. PLoS One. 2017; 12 (12): e0190229. https://doi.org/10.1371/journal.pone.0190229
  22. Lee R., Fischer R., Charles P.D., Adlam D., Valli A., Di Gleria K., Kharbanda R.K., Choudhury R.P., Antoniades C., Kessler B.M., Channon K.M. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption. Clin. Proteomics. 2017; 14: 22. https://doi.org/10.1186/s12014-017-9157-x
  23. Nicolussi A., D’Inzeo S., Capalbo C., Giannini G., Coppa A. The role of peroxiredoxins in cancer. Mol. Clin. Oncol. 2017; 6 (2): 139–53. https://doi.org/10.3892/mco.2017.1129
  24. Rhee S.G., Woo H.A., Kil I.S., Bae S.H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 2012; 287 (7): 4403–10. https://doi.org/10.1074/jbc.R111.283432
  25. Rhee S.G., Kil I.S. Multiple Functions and Regulation of Mammalian Peroxiredoxins. Annu. Rev. Biochem. 2017; 86: 749–75. https://doi.org/10.1146/annurev-biochem-060815-014431
  26. Liu J., Su G., Gao J., Tian Y., Liu X., Zhang Z. Effects of Peroxiredoxin 2 in Neurological Disorders: A Review of its Molecular Mechanisms. Neurochem. Res. 2020; 45 (4): 720–30. https://doi.org/10.1007/s11064-020-02971-x
  27. Kato R., Hayashi M., Aiuchi T., Sawada N., Obama T., Itabe H. Temporal and spatial changes of peroxiredoxin 2 levels in aortic media at very early stages of atherosclerotic lesion formation in apoE-knockout mice. Free Radic. Biol Med. 2019; 130: 348–60. https://doi.org/10.1016/j.freeradbiomed.2018.10.458
  28. Xi D., Luo T., Xiong H., Liu J., Lu H., Li M., Hou Y., Guo Z. SAP: structure, function, and its roles in immune-related diseases. Int. J. Cardiol. 2015; 187: 20–6. https://doi.org/10.1016/j.ijcard.2015.03.179