THE INFLUENCE OF L-AMINO ACIDS ON THE VIABILITY OF NEUROENDOCRINE PC12 CELLS LINE

DOI: https://doi.org/10.29296/24999490-2021-06-04

N.S. Linkova(1–3), N.I. Chalisova(1, 4), G.A. Ryzhak(1), E.O. Gutop(1), O.M. Ivko(1) 1-Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, Saint Petersburg, 197110, Russian Federation; 2-Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb., 6, Saint Petersburg, 199034, Russian Federation; 3-Academy of postgraduate education under FSBU FSCC of FMBA of Russia, Volokolamskое av., 91, Moscow, 125371, Russian Federation; 4Belgorod State University, Pobedy str., 85, Belgorod, 308015, Russian Federation E-mail: [email protected]

Introduction. It was shown, that L-amino acids can take part in regulation of the main physiological processes. Various combination of L-amino acids takin into account of its biological activity can apply for peptide drugs synthesis for target therapy of social significant diseases. The aim. Estimation of the influence of 20 L-amino acids on the viability of PC12 cell line. Methods. The investigation was based on MTT test applying for viability estimation of PC12 cell line. Results. Methionine, arginine, asparagine, glutamic acid and histidine increased the viability of PC12 cell line on 54, 56, 51, 63 and 27% accordingly. Conclusion. The molecular mechanism of histidine and arginine activity can be connected with epigenetic genes regulation of cell metabolism. Previously it was shown that 5 amino acids stimulated nerve and pancreatic tissues grown in various aged animals. It can be constructed short peptides on the base of methionine, arginine, asparagine, glutamic acid and histidine. These peptides can be perspectives substances for prevention and therapy age-related neuroendocrine pathology.
Keywords: 
L-amino acids, neuroendocrine cells, epigenetic regulation, peptides

Список литературы: 
  1. Khavinson V., Linkova N., Diatlova A., Trofimova S. Peptide regulation of cell differentiation. Stem Cell Reviews and Reports. 2020; 16: 118–25. https://doi.org/10.1007/s12015-019-09938-8.
  2. Khavinson V., Diomede F., Mironova E., Linkova N., Trofimova S., Trubiani O., Caputi S., Sinjari B. AEDG Peptide (Epitalon) stimulates gene expression and protein synthesis during neurogenesis: possible epigenetic mechanism. Molecules. 2020; 25 (3): 1–17. https://doi.org/10.3390/molecules25030609.
  3. Khavinson V., Linkova N., Kozhevnikova E., Trofimova S. EDR peptide: possible mechanism of gene expression and protein synthesis regulation involved in the pathogenesis of Alzheimer’s disease. Molecules. Special Issue «Peptide Therapeutics 2.0». 2021; 26 (1): 1–16. https://doi.org/10.3390/molecules26010159.
  4. Khavinson V., Linkova N., Dyatlova A., Kuznik B., Umnov R. Peptides: prospects for use in the treatment of COVID-19. Molecules. Special Issue «Peptide Therapeutics 2.0». 2020; 25 (10). 4389. https://doi.org/ 10.3390/molecules25194389.
  5. Bonfili L., Cecarini V., Cuccioloni M., Angeletti M., Flati V., Corsetti G., Pasini E., Dioguardi F.S., Eleuteri A.M. Essential amino acid mixtures drive cancer cells to apoptosis through proteasome inhibition and autophagy activation. FEBS. 2017; 284 (11): 1726–37. https://doi.org/10.1111/febs.14081.
  6. Kimura M., Ogihara M. Effects of branched-chain amino acids on DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Eur. J. Pharmacol. 2005; 510 (3): 167–80. https://doi.org/10.1016/j.ejphar.2005.01.011.
  7. Bolam J.P., Ellender T.J. Histamine and the striatum. Neuropharmacology. 2016; 106: 74–84. https://doi.org/10.1016/j.neuropharm.2015.08.013.
  8. Cruzat V., Macedo M., Rogero K., Noel Keane N., Curi R., Newsholme P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. 2018; 10 (1): 1564. https://doi.org/10.3390/nu10111564.
  9. Chalisova N.I., Koncevaya E.A., Linkova N.S., Pronyaeva V.E., Cherviakova N.A., Umnov R.S., Benberin V.V., Khavinson V.Kh. Biological activity of amino acids in organotypic tissue cultures. Bull. Exp. Biol. Med. 2013; 155 (4): 581–5. https://doi.org/10.1007/s10517-013-2200-7.
  10. Chalisova N.I., Kontzevaya E.A., Voitzekhovskaya M.A., Komashnya A.V. Regulating effect of coded amino acids on basic cellular processes of young and old animals. Advances in Gerontology. 2011; 24 (2): 189–97.
  11. Chalisova N.I., Kamyshev N.G., Lopatina N.G., Kontsevaja E.A., Urt'eva S.A., Urt'eva T.A. Vlijanie kodiruemyh aminokislot na assotsiativnoe obuchenie medonosnoj pchely. Apis Mellifera. Zhurnal evoljutsionnoj biohimii i fiziologii. 2011; 46 (6): 516–8. [Chalisova N.I., Kamyshev N.G., Koncevaya E.A., Urt’eva S.A., Urt’eva T.A. The influence of encoded amino acids on the associative education of honeybee Apis Mellifera. The J. of Evolution Biochemistry and Physiology. 2011; 46 (6): 516–8 (in Russian)].
  12. Havinson V.H., Chalisova N.I., Lin'kova N.S., Halimov R.I., Nichik T.E. Zavisimost' tkanespetsificheskogo dejstvija peptidov ot ih kolichestvennogo aminokislotnogo sostava. Fundamental'nye issledovanija. 2015; 2: 497–503. [Khavinson V.H., Chalisova N.I., Linkova N.S., Khalimov R.I., Nichik T.E. The dependence of tissue-specific peptides activity on the number of amino acids in the peptides. Fundamental Researches. 2015; 2: 497–503 (in Russian)]
  13. Koncevaya E.A., Linkova N.S., Chalisova N.I., Dudkov A.V, Sinyachkin D.A. Effect of amino acids on expression of signal molecules in organotypic culture of the spleen. Bull. Exp. Biol. Med. 2012; 153 (4): 573–6. https://doi.org/10.1007/s10517-012-1769-6.
  14. Wu C., Zhao W., Yu J., Li S., Lin L., Chen X. Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. Sci Rep. 2018; 8 (1): 574. https://doi.org/10.1038/s41598-017-18935-1.
  15. Tian J.S., Liu S.B., He X.Y., Xiang H., Chen J.L., Gao Y., Zhou Y.Z., Qin X.M. Metabolomics studies on corticosterone-induced PC12 cells: A strategy for evaluating an in vitro depression model and revealing the metabolic regulation mechanism. Neurotoxicol. Teratol. 2018; 69: 27–38. https://doi.org/10.1016/j.ntt.2018.07.002.
  16. Li L., Sun H.Y., Liu W., Zhao H.Y., Shao M.L. Silymarin protects against acrylamide-induced neurotoxicity via Nrf2 signalling in PC12 cells. Food Chem. Toxicol. 2017; 102: 93–101. https://doi.org/10.1016/j.fct.2017.01.021.
  17. Hoffman M.M., Khrapov M.A., Cox J.C., Yao J., Tong L., Ellington A.D. AANT: the Amino Acid-Nucleotide Interaction Database. Nucleic Acids Res. 2004; 32: 174–81. https://doi.org/10.1093/nar/gkh128.