PROVOCATION OF OXIDATIVE STRESS BY HEAVY METALS AS A POSSIBLE TRIGGER FACTOR IN THE DEVELOPMENT OF RHEUMATOID ARTHRITIS

DOI: https://doi.org/10.29296/24999490-2022-01-03

E.A. Takha(1), E.A. Shuralev(2), Y. Renaudineau(3), M.I. Arleevskaya(1, 2) 1-Kazan State Medical Academy – a branch of the Federal State Budgetary Educational Institution of Additional Professional Education “Russian Medical Academy of Continuing Professional Education” of the Ministry of Health of the Russian Federation, 36 Butlerova St., Kazan, 420012, Russian Federation; 2-Federal State Autonomous Educational Institution of Higher Education «Kazan (Volga Region) Federal University», 18 Kremlyovskaya St., Kazan, 420008, Russian Federation; 3-Laboratory of immunology, chu purpan, inserm1291/cnrs5051, University Paul Sabatier, Toulouse, France

Introduction. Rheumatoid arthritis, like other multifactorial diseases, develops as a result of an inadequate response of a predisposed organism to environmental challenges. Material and methods. A review of the literature on the molecular mechanisms of the effects of heavy metals on the body. Results. It is known that ecotoxicants provoke various nonspecific processes in the body, including oxidative stress (OS). The latter, in turn, according to a fairly large number of studies, is represented in rheumatoid, and possibly plays a pathogenetic role in this disease. The aim of the review is to analyze the mechanisms of the possible role of heavy metals in the development of rheumatoid arthritis. The review presents an analysis of publications by Russian and foreign authors over the past 10 years. Since environmental factors are modifiable to a certain extent, the study of specific mechanisms of the triggering effect of these factors on individuals at risk is of great practical importance. Conclusion. The influence of the certain environmental factors, including heavy metals, as well as various combinations of these factors, on the development of rheumatoid arthritis in individuals at risk requires further study.
Keywords: 
rheumatoid arthritis, oxidative stress, heavy metals, ecotoxicants, autoimmune diseases

Список литературы: 
  1. Croia C., Bursi R., Sutera D., Petrelli F., Alunno A., Puxeddu I. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2019; 37 (3): 347–57.
  2. Gerlag D.M., Raza K., van Baarsen L.G., Brouwer E., Buckley C.D., Burmester G.R., Gabay C., Catrina A.I., Cope A.P., Cornelis F., Dahlqvist S.R., Emery P., Eyre S., Finckh A., Gay S., Hazes J.M., van der Helm-van Mil A., Huizinga T.W., Klareskog L., Kvien T.K., Lewis C., Machold K.P., Rönnelid J., van Schaardenburg D., Schett G., Smolen J.S., Thomas S., Worthington J., Tak P.P. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann Rheum Dis. 2012; 71 (5): 638–41. https://doi.org/ 10.1136/annrheumdis-2011-200990.
  3. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015; 4: 180–3. https://doi.org/10.1016/j.redox.2015.01.002.
  4. Cabello-Verrugio C., Simon F., Trollet C., F.Santibañez J., Oxidative Stress in Disease and Aging: Mechanisms and Therapies. Oxid Med Cell Longev. 2017; 2017: 4310469. https://doi.org/10.1155/2017/4310469.
  5. Lugrin J., Rosenblatt-Velin N., Parapanov R., Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014; 395 (2): 203–30. https://doi.org/10.1515/hsz-2013-0241.
  6. Ferreira H.B., Melo T., Paiva A., Domingues M. Insights in the Role of Lipids, Oxidative Stress and Inflammation in Rheumatoid Arthritis Unveiled by New Trends in Lipidomic Investigations. Antioxidants (Basel). 2021; 10 (1): 45. https://doi.org/10.3390 /antiox10010045.
  7. Quinonez-Flores C.M., Gonzalez-Chavez S.A., Del Rio Najera D., Pacheco-Tena C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: A systematic review. Biomed Res. Int. 2016; 2016: 6097417. https://doi.org/10.1155/2016/6097417.
  8. Burska A.N., Hunt L., Boissinot M., Strollo R., Ryan B.J., Vital E., Nissim A., Winyard P.G., Emery P., Ponchel F. Autoantibodies to Posttranslational Modifications in Rheumatoid Arthritis. Mediators of Inflammation. 2014; 2014: 492873. https://doi.org/10.1155/2014/492873.
  9. Brunekreef B., Holgate S.T. Air Pollution and Health. The Lancet. 2002; 360 (9341): 1233–42360. https://doi.org/10.1016/S0140-6736 (02)11274-8.
  10. Hirao M., Yamasaki N., Oze H., Ebina K., Nampei A., Kawato Y., Shi K., Yoshikawa H., Nishimoto N., Hashimoto J. Serum level of oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated with tocilizumab. Rheumatol Int. 2012; 32 (12): 4041–5. https://doi.org/10.1007/ s00296-011-2135-0.
  11. Veselinovic M., Barudzic N., Vuletic M., Zivkovic V., Tomic-Lucic A., Djuric D., Jakovljevic V. Oxidative stress in rheumatoid arthritis patients: relationship to diseases activity. Mol. Cell. Biochem. 2014; 391 (1–2): 225–32. https://doi.org/10.1007 / s11010-014-2006-6.
  12. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82 (1): 47–95. https://doi.org/10.1152/Physrev.00018.2001.
  13. Sies H., Berndt C., Jones D.P. Oxidative Stress. Annu Rev Biochem. 2017; 86: 715–48. https://doi.org/10.1146/annurev-biochem-061516-045037.
  14. Haberzettl P., O’toole T.E., Bhatnagar A., Conklin D.J. Exposure tofine particulate air pollution causes vascular insulin resistance byinducing pulmonary oxidative stress. Environ Health Perspect. 2016; 124: 1830–9. https://doi.org/10.1289/EHP212.
  15. Parmalee N.L., Aschner M. Metals and Circadian Rhythms. Adv Neurotoxicol. 2017; 1: 119–30. https://doi.org/10.1016/bs.ant.2017.07.003.
  16. Pourahmad J., O’Brien P.J. Contrasting role of Na(+) ions in modulating Cu(+2) or Cd(+2) induced hepatocyte toxicity. Chem Biol. Interact. 2000; 126 (2): 159–69. https://doi.org/10.1016/s0009-2797 (00) 00162-9.
  17. Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol. Interact. 2006; 160 (1): 1–40. https://doi.org/10.1016/j.cbi.2005.12.009.
  18. Pereira C.S., Thompson J.A., Xavier K.B. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev. 2013; 37 (2): 156–81. https://doi.org/10.1111/j.1574-6976.2012.00345.x.
  19. Lambert J.D., Elias R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010; 501 (1): 65–72. https://doi.org/10.1016/j.abb.2010.06.013.
  20. Aseervatham G.S., Sivasudha T., Jeyadevi R., Arul Ananth D. Environmental factors and unhealthy lifestyle influence oxidative stress in humans-an overview. Environ Sci Pollut Res Int. 2013; 20 (7): 4356–69. https://doi.org/10.1007/s11356-013-1748-0.
  21. Hartwig A. Mechanisms in cadmium-induced carcinogenicity: recent insights. Biometals. 2010; 23 (5): 951–60. https://doi.org/10.1007/s10534-010-9330-4.
  22. Bertin G., Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie. 2006; 88 (11): 1549–59. https://doi.org/10.1016/j.biochi.2006.10.001.
  23. Abdeen A., Abou-Zaid O.A., Abdel-Maksoud H.A., Aboubakr M., Abdelkader A., Abdelnaby A., Abo-Ahmed A.I., El-Mleeh A., Mostafa O., Abdel-Daim M., Aleya L. Cadmium overload modulates piroxicam-regulated oxidative damage and apoptotic pathways. Environ Sci Pollut Res Int. 2019; 26 (24): 25167–77. https://doi.org/10.1007/s11356-019-05783-h.
  24. Polykretis P., Cencetti F., Donati C., Luchinat E., Banci L. Cadmium effects on superoxide dismutase 1 in human cells revealed by NMR. Redox Biol. 2019; 21: 101102. https://doi.org/10.1016/j.redox.2019.101102.
  25. Slepchenko K.G., Lu Q., Li Y.V. Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia. Am. J. Physiol Cell Physiol. 2017; 313 (4): 448–59. https://doi.org/10.1152/ajpcell.00048.2017.
  26. Bonaventura P., Lamboux A., Albarède F., Miossec P. Differential effects of TNF-α and IL-1β on the control of metal metabolism and cadmium-induced cell death in chronic inflammation. PLoS One. 2018; 13 (5): e0196285. https://doi.org/10.1371/journal.pone.0196285.
  27. Valko M., Morris H., Cronin M.T. Metals, toxicity and oxidative stress. Curr Med Chem. 2005; 12 (10): 1161–208. https://doi.org/10.2174/0929867053764635.
  28. Das K.K., Dasgupta S. Effect of nickel on testicular nucleic acid concentrations of rats on protein restriction. Biol Trace Elem Res. 2000; 73 (2): 175–80. https://doi.org/10.1385/BTER:73:2:175.
  29. Stinson T.J., Jaw S., Jeffery E.H., Plewa M.J. The relationship between nickel chloride-induced peroxidation and DNA strand breakage in rat liver. Toxicol Appl Pharmacol. 1992; 117 (1): 98–103. https://doi.org/10.1016/0041-008x(92) 90222-e.
  30. Kumar V., Gill K.D. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology. 2014; 41: 154–66. https://doi.org/DOI: 10.1016/j.neuro.2014.02.004.
  31. Morgan J.L., Thomas K., Braungart S., Nelson R.L. Transparent cap colonoscopy versus standard colonoscopy: a systematic review and meta-analysis. Tech Coloproctol. 2013; 17 (4): 353–60. https://doi.org/10.1007/s10151-013-0974-2.
  32. Mao B.H., Chen Z.Y., Wang Y.J., Yan S.J. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018; 8 (1): 2445. https://doi.org/10.1038 / s41598-018-20728-z.
  33. Comhair S.A., Erzurum S.C. Antioxidant responses to oxidant-mediated lung diseases. Am. J. Physiol Lung Cell Mol Physiol. 2002; 283 (2): 246–55. https://doi.org/10.1152/ajplung.00491.2001.
  34. Haddad J.J. Oxygen sensing and oxidant/redox-related pathways. Biochem Biophys Res Commun. 2004; 316 (4): 969–77. https://doi.org/10.1016/j.bbrc.2004.02.162.
  35. Jakusheva E.N., Myl'nikov P.Ju., Chernyh I.V., Schul'kin A.V. Vlijanie meksidola na ekspressiju transkriptsionnogo faktora Nrf2 v kore bol'shih polusharij golovnogo mozga pri eksperimental'noj ishemii. Zhurnal nevrologii i psihiatrii. 2018; 5: 63–7. https://doi.org/10.17116/jnevro20181186163-67 [Yakusheva E.N., Mylnikov P.U., Chernykh I.V., Shchulkin A.V. Effect of Mexidol on the expression of the transcription factor Nrf2 in the cerebral cortex during experimental ischemia. Zhurnal Nevrologii i Psikhiatrii. 2018; 5: 63–7 (in Russian) https://doi.org/10.17116/jnevro20181186163-67]
  36. Zhang L., Wang H. Targeting the NF-E2-Related Factor 2 Pathway: a Novel Strategy for Traumatic Brain Injury. Molecular Neurobiology. 2018; 55 (2): 1773–85. https://doi.org/10.1007/s12035-017-0456-z.
  37. 37. Hayes J.D., Chanas S.A., Henderson C.J., McMahon M., Sun C., Moffat G.J., Wolf C.R., Yamamoto M. The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochemical Society Transactions. 2000; 28 (2): 33–41. https://doi.org/10.1042/bst0280033.
  38. Zheng F., Gonçalves F.M., Abiko Y., Li H., Kumagai Y., Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol. 2020; 34: 101475. https://doi.org/10.1016/j.redox.2020.101475.
  39. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013; 53: 401–26. https://doi.org/10.1146/annurev-pharmtox-011112-140320.
  40. Silva-Islas C.A., Maldonado P.D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res. 2018; 134: 92–9. https://doi.org/10.1016/j.phrs.2018.06.013.
  41. Chen C.L., Chiou H.Y., Hsu L.I., Hsueh Y.M., Wu M.M., Chen C.J. Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res. 2010; 110 (5): 455–62. https://doi.org/10.1016/j.envres.2009.08.010.
  42. Brooks M.B., Stokol T., Catalfamo J.L. Comparative hemostasis: animal models and new hemostasis tests. Clin Lab Med. 2011; 31 (1): 139–59. https://doi.org/10.1016/j.cll.2010.10.009.
  43. Chen R.E., Thorner J. Systems biology approaches in cell signaling research. Genome Biol. 2005; 6 (10): 235. https://doi.org/10.1186/GB-2005-6-10-235.
  44. Reboul C., Boissière J., André L., Meyer G., Bideaux P., Fouret G., Feillet-Coudray C., Obert P., Lacampagne A., Thireau J., Cazorla O., Richard S. Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway. Sci Rep. 2017; 7: 39715. https://doi.org/10.1038/srep39715.
  45. Reboul C., Thireau J., Meyer G., André L., Obert P., Cazorla O., Richard S. Carbon monoxide exposure in the urban environment: an insidious foe for the heart? Respir Physiol Neurobiol. 2012; 184 (2): 204–12. https://doi.org/10.1016/j.resp.2012.06.010.
  46. Durga M., Nathiya S., Rajasekar A., Devasena T. Effects of ultrafine petrol exhaust particles on cytotoxicity, oxidative stress generation, DNA damage and inflammation in human A549 lung cells and murine RAW 264.7 macrophages. Environ Toxicol Pharmacol. 2014; 38 (2): 518–30. https://doi.org/10.1016/j.etap.2014.08.003.
  47. Donaldson K., Tran L., Jimenez L.A., Duffin R., Newby D.E., Mills N., MacNee W., Stone V. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2005; 2: 10. https://doi.org/10.1186/1743-8977-2-10.
  48. Perricone C., Versini M., Ben-Ami D., Gertel S., Watad A., Segel M.J., Ceccarelli F., Conti F., Cantarini L., Bogdanos D.P., Antonelli A., Amital H., Valesini G., Shoenfeld Y. Smoke and autoimmunity: The fire behind the disease. Autoimmun Rev. 2016; 15 (4): 354–74. https://doi.org/10.1016/j.autrev.2016.01.001