Lungs and liver remodeling depends on the presence of metastasis in melanoma B16-bearing mice

DOI: https://doi.org/10.29296/24999490-2022-01-07

N.V. Palkina, D.S. Zemtsov, A.N. Narkevich, Ya.V. Bardetskaya, A.K. Kirichenko, T.G. Ruksha Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1, P. Zeleznyaka str., Krasnoyarsk, 660022, Russian Federation

Pre-metastatic niche formation precedes tumor dissemination although the mechanisms of it remain unclear. Therefore, the aim of the study was to evaluate the expression of molecules characterizing the microenvironment remodeling in target organs lungs and liver, depending on the presence of metastases in murine melanoma B16 in vivo. Material and methods. Melanoma B16 cells transplantation was carried out on C57Bl6 mice followed by the tumor development observation within 15 days. After that the mice were sacrificed. Tumors, lungs and livers tissues were fixed in formalin and embedded in paraffin. Tissues samples were stained with hematoxylin and eosin. Immunohistochemical study was provided with monoclonal antibodies to vascular endothelial growth factor A, smooth muscle actin-α, CD45RО and СD-31. Results. Metastasis were revealed in 33.3% of mice. In mice presented melanoma metastases to visceral organs, an increase in the expression of vascular endothelial growth factor A was found in the lungs, and smooth muscle actin-α and CD31 in the liver, compared with these molecules expression in the group of animals without metastases. Besides, a strong positive correlation between the level of non-proliferating Ki-67-negative melanoma cells in the primary tumor and CD45RO expression in the lungs and liver was observed in metastasis-free animals. Conclusions. The results obtained indicate possible presence of intercellular communication between melanoma cells in the primary tumor and target organs at the premetastatic stage resulting in altering of antitumor resistance
Keywords: 
melanoma, dormant cells, microenvironment, metastasis, Ki-67, VEGFA, SMA, CD45RO, CD31

Список литературы: 
  1. Massagué J., Ganesh K. Metastasis-initiating cells and ecosystems. Cancer Discov. 2021; 11 (4): 971–94. https://doi.org/10.1158/2159-8290.CD-21-0010
  2. Fares J., Fares M.Y., Khachfe H.H., Salhab H.A., Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal. Transduct. Target Ther. 2020; 5 (1): 28–45. https://doi.org/10.1038/s41392-020-0134-x
  3. Yang C., Tian C., Hoffman T.E., Jacobsen N.K., Spencer S.L. Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signaling. Nat. Commun. 2021; 12 (1747): 1–14. https://doi.org/10.1038/s41467-021-21549-x
  4. Aqbi H.F., Coleman C., Zarei M., Manjili S.Y., Graham L., Koblinski J., Guo C., Xie Y., Guruli G.,Bear H.D., Idowu M.O., Habibi M., Wang X.-Y., Manjili M.H. Local and distant tumor dormancy during early stage breast cancer are associated with the predominance of infiltrating T effector subsets. Breast Cancer Res. 2020; 22 (1): 116. https://doi.org/10.1186/s13058-020-01357-9
  5. Suzuki M., Mose E.S., Montel V., Tarin D. Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am. J. Pathol. 2006; 169 (2): 673–81. https://doi.org/10.2353/ajpath.2006.060053
  6. Neophytou C.M., Kyriakou T.C., Papageorgis P. Mechanisms of metastatic tumor dormancy and implications for cancer therapy. Int. J. Mol. Sci. 2019; 20 (24): 6158. https://doi.org/10.3390/ijms20246158
  7. Park S.Y., Nam J.S. The force awakens: metastatic dormant cancer cells. Exp. Mol. Med. 2020; 52 (4): 569–81. https://doi.org/10.1038/s12276-020-0423-z
  8. Chew V., Toh H.C., Abastado J.P. Immune microenvironment in tumor progression: characteristics and challenges for therapy. J. Oncol. 2012; 2012: 608406. https://doi.org/10.1155/2012/608406
  9. Guo Y., Ji X., Liu J., Fan D., Zhou Q., Chen C., Wang W., Wang G., Wang H., Yuan W., Ji Z., Sun Z. Effects of exosomes on pre-metastatic niche formation in tumors. Mol. Cancer. 2019; 18 (1): 39–49. https://doi.org/10.1186/s12943-019-0995-1
  10. Ruksha T.G., Aksenenko M.B., Gyrylova S.N. Zlokachestvennye novoobrazovanija kozhi: analiz zabolevaemosti v Krasnojarskom krae, problemy profilaktiki i sovershenstvovanija rannej diagnostiki. Vestnik dermatologii i venerologii. 2010; 4: 4–9. [Ruksha T.G., Aksenenko M.B., Gyrylova S.N. Skin cancxer in Krasnoyarsk krai: the problems of prevention and early diagnostics] Vestnik dermatologii i venerologii. 2010; 86 (4): 4–9. https://doi.org/10.25208/0042-4609-2010-0-04 (in Russian)]
  11. International Guiding Principles for Biomedical Research Involving Animals issued by CIOMS. Vet Q. 1986; 8 (4): 350–2. https://doi.org/10.1080/01652176.1986.9694068
  12. Aksenenko M.B., Palkina N.V., Sergeeva O.N., Sergeeva E. Yu., Kirichenko A.K., Ruksha T.G. miR-155 overexpression is followed by downregulation of its target gene, NFE2L2, and altered pattern of VEGFA expression in the liver of melanoma B16-bearing mice at the premetastatic stage. Int. J. Exp. Pathol. 2019; 100 (5–6): 311–9. https://doi.org/10.1111/iep.12342.9
  13. Aksenenko M.B., Shestakova L.A., Ruksha T.G. Osobennosti metastazirovanija perevivaemoj melanomy V16 posle ingibirovanija aktivnosti MMP-9. Sibirskij onkologicheskij zhurnal. 2012; 1 (49): 31–5. [Aksenenko M.B., Shestakova L.A., Ruksha T.G. Features of metastasis transplanted B16 melanoma after inhibition MMP-9] Sibirskij onkologicheskij zhurnal – Siberian journal of Oncology. 2012; 1 (49): 31–5 (in Russian)]
  14. Sorrentino C., Miele L., Porta A., Pinto A., Morello S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget. 2015; 6 (29): 27478–89. https://doi.org/10.18632/oncotarget.4393
  15. Claesson-Welsh L., Welsh M. VEGFA and tumour angiogenesis. J. Intern. Med. 2013; 273 (2): 114–27. https://doi.org/10.1111/joim.12019
  16. Brodt T. Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin. Cancer Res. 2016; 22 (24): 5971–82. https://doi.org/10.1158/1078-0432.CCR-16-0460