SARCOIDOSIS: MOLECULAR MARKERS AND TARGETS FOR TARGETED DIAGNOSIS AND THERAPY

DOI: https://doi.org/https://doi.org/10.29296/24999490-2022-03-01

P.K. Yablonsky(1, 2), A.O. Drobintseva(1, 3), T.S. Zubareva(1), Yu.S. Krylova(1, 4), D.O. Leonteva(1), I.M. Kvetnoy(1, 2), M.A. Paltsev(5)
1-Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare
of the Russian Federation, Ligovskij avenue, 2–4, Saint-Petersburg, 191036, Russian Federation;
2-Saint-Petersburg University, Universitetskaya Embankment, 7–9, Saint-Petersburg, 199034, Russian Federation;
3-St. Petersburg State Pediatric Medical University, Litovskaya street, 2, Saint-Petersburg, 194100, Russian Federation;
4-Pavlov First Saint Petersburg State Medical University, Street L’va Tolstogo, 6–8, Saint-Petersburg, 197022, Russian Federation;
5-Lomonosov Moscow State University, Leninskie gory, 1, building 12, Moscow, 119991, Russian Federation

The review is devoted to the analysis of modern ideas about the molecular mechanisms of the pathogenesis of sarcoidosis, it describes the signaling molecules involved in the development of sarcoidosis, which can be biomarkers and targets for optimizing personalized diagnosis and targeted therapy of the disease. The aim of the study was to consider the possible mechanisms of development of granuloma and fibrosis of the lung tissue in this pathology and to characterize the molecular markers of sarcoidosis. Material and methods: the analysis and systematization of scientific literature over the past 5 years was carried out in the PubMed, Scopus and Google Scholar databases. Results. The review focuses on various subpopulations of lymphocytes, as well as angiogenic factors (VEGF and HIF-1α) and molecules associated with the development of inflammation (TNF-α, IFN type I, Janus kinase, COX-2). The possible epigenetic regulation of the processes occurring in sarcoidosis with the help of miRNAs is considered. The possibility of using the analysis of single nucleotide polymorphisms of genes to identify a risk group for the development of sarcoidosis, as well as an unfavorable prognosis for its course, is discussed.
Keywords: 
sarcoidosis, signaling molecules, personalized diagnostics, targeted therapy

Список литературы: 
  1. Crouser E.D., Maier L.A., Wilson K.C. Diagnosis and detection of sarcoidosis. an official American thoracic society clinical practice guideline. Am J Respir Crit Care Med. 2020; 201 (8): 26–51. https://doi.org/10.1164/rccm.202002-0251ST.
  2. Rybicki B.A., Iannuzzi M.C. Epidemiology of sarcoidosis: recent advances and future prospects. Semin Respir Crit Care Med. 2007; 28: 22–35.
  3. Reich J.M. A critical analysis of sarcoidosis incidence assessment. Multidiscip Respir Med. 2013; 8: 57. https://doi.org/ 10.1186/2049- 6958-8-57.
  4. Kiszałkiewicz J., Piotrowski W.J., Brzeziańska-Lasota E. Selected molecular events in the pathogenesis of sarcoidosis – recent advances. Pneumonol Alergol Pol. 2015; 83 (6): 462–75. https://doi.org/10.5603/PiAP.2015.0076.
  5. Dubaniewicz A. Microbial and human heat shock proteins as “danger signals” in sarcoidosis. Hum Immunol. 2013; 74: 1550–8. https://doi.org/ 10.1016/j.humimm.2013.08.275.
  6. Старшинова А.А., Малкова А.М., Зинченко Ю.С., Басанцова Н.Ю., Кудлай Д.А., Яблонский П.К. Аутоиммунная составляющая в этиологии саркоидоза. Туберкулез и болезни легких. 2020; 98(5): 54–62. [Starshinova A.A., Malkova A.M., Zinchenko YU.S., Basancova N.YU., Kudlaj D.A., Yablonsky P.K. Autoimmune component in the etiology of sarcoidosis. Tuberkulez i bolezni legkih. 2020; 98(5): 54–62 (in Russian)].
  7. Spagnolo P., Schwartz D.A. Genetic predisposition to sarcoidosis: another brick in the wall. Eur Respir J. 2013; 41: 778–80. https://doi.org/ 10.1183/09031936.00159912.
  8. Llanos O., Hamzeh N. Sarcoidosis. Med Clin. North Am. 2019; 103 (3): 527–34. https://doi.org/ 10.1016/j.mcna.2018.12.011.
  9. Bergeron A., Bonay M., Kambouchner M. Cytokine patterns in tuberculous and sarcoid granulomas: correlations with histopathologic features of the granulomatous response. J. Immunol. 1997; 159: 3034–43.
  10. Noor A., Knox K.S. Immunopathogenesis of sarcoidosis. Clin. Dermatol. 2007; 25: 250–8.
  11. Grunewald J., Brynedal B., Darlington P. Different HLA -DRB1 allele distributions in distinct clinical subgroups of sarcoidosis patients. Respir Res. 2010; 11: 25. https://doi.org/ 10.1186/1465- 9921-11-25.
  12. Yamada Y., Tatsumi K., Yamaguchi T., Tanabe N., Takiguchi Y., Kuriyama T., Mikami R. Influence of stressful life events on the onset of sarcoidosis. Respirology. 2003; 8 (2): 186–91. https://doi.org/ 10.1046/j.1440-1843.2003.00456.x.
  13. De Vries J., Drent M. Relationship between perceived stress and sarcoidosis in a Dutch patient population. Sarcoidosis Vasc Diffuse Lung Dis. 2004; 21 (1): 57–63.
  14. Matzinger P. The danger model: a renewed sense of self. Science. 2002; 296: 301–5.
  15. Suárez L.J., Garzón H., Aboleda S., Rodriguez A. Oral dysbiosis and autoimmunity: from local periodontal responses to an imbalanced systemic immunity. A review. Frontiers in Immunology. 2020. 11. DOI=10.3389/fimmu.2020.591255.
  16. Soto-Gomez N., Peters J.I., Nambiar A.M. Diagnosis and management of sarcoidosis. Am fam physician. 2016; 93 (10): 840–8. PMID: 27175719.
  17. ATS/ERS/WASOG statement on sarcoidosis. Sarcoidosis Statement Committee. American Thoracic Society. European Respiratory Society. World Association for Sarcoidosis and Other Granulomatous Disorders. Eur Respir J. 1999; 14: 735–7.
  18. Meyer K.C., Raghu G., Baughman R.P. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am. J. Respir Crit Care Med. 2012; 185 (9): 1004–14.
  19. Bargagli E., Bennett D., Maggiorelli C. Human chitotriosidase: a sensitive biomarker of sarcoidosis. J. Clin. Immunol. 2013; 33 (1): 264.
  20. Bhargava M., Viken K.J, Barkes B. Novel protein pathways in development and progression of pulmonary sarcoidosis. Sci Rep. 2020; 10 (1): 13282. https://doi.org/10.1038/s41598-020-69281-8.
  21. Яблонский П.К., Полякова В.О., Крылова Ю.С., Дробинцева А.О., Леонтьева Д.О., Соколович Е.Г., Кветной И.М. Нейроиммуноэндокринный профиль саркоидной гранулемы: экспрессия сигнальных молекул. Молекулярная медицина, 2020; 18 (1): 16–20. https://doi.org/10.29296/24999490-2020-01-03 [Yablonsky P.K., Polyakova V.О., Krylova Yu. S., Drobintseva А.О., Leonteva D.O., Sokolovich Е.G., Kvetnoy I.М. Neuroimmunoendocrine profile of sarcoid granuloma: expression of signaling molecules. Molekulyarnaya meditsina. 2020; 18 (1): 16–20 (in Russian)].
  22. Darlington P., Kullberg S., Eklund A., Grunewald J. Subpopulations of cells from bronchoalveolar lavage can predict prognosis in sarcoidosis. Eur Respir J. 2020; 55 (1): 1901450. https://doi.org/10.1183/13993003.01450-2019.
  23. Vukmirovic M., Yan X., Gibson K.F. Transcriptomics of bronchoalveolar lavage cells identifies new molecular endotypes of sarcoidosis. Eur Respir J. 2021; 58 (6): 2002950. https://doi.org/10.1183/13993003.02950-2020.
  24. Bargagli E., Prasse A. Sarcoidosis: a review for the internist. Intern Emerg Med. 2018; 13 (3): 325–31. https://doi.org/10.1007/s11739-017-1778-6.
  25. Bergantini L., Cameli P., d’Alessandro M. NK and NKT-like cells in granulomatous and fibrotic lung diseases. Clin Exp Med. 2019; 19 (4): 487–94. https://doi.org/10.1007/s10238-019-00578-3.
  26. Oswald-Richter K.A., Richmond B.W., Braun N.A. Reversal of global CD4+ subset dysfunction is associated with spontaneous clinical resolution of pulmonary sarcoidosis. J. Immunol 2013; 190: 5446–53. https://doi.org/ 10.4049/jimmunol.1202891.
  27. Nistala K., Wedderburn L.R. Th17 and regulatory T cells: re- balancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology (Oxford) 2009; 48: 602–6. https://doi.org/10.1093/rheumatology/kep028.
  28. Huang H., Lu Z., Jiang C., Liu J., Wang Y., Xu Z. Imbalance between Th17 and regulatory T-Cells in sarcoidosis. Int J. Mol. Sci. 2013; 14: 21463–73. https://doi.org/ 10.3390/ijms141121463.
  29. Tøndell A., Moen T., Børset M., Salvesen Ø., Rø A.D., Sue-Chu M. Bronchoalveolar lavage fluid IFN-g+ Th17 cells and regulatory T cells in pulmonary sarcoidosis. Mediators Inflamm. 2014; 2014: 438070. https://doi.org/ 10.1155/2014/438070.
  30. Idali F., Wahlstrom J., Muller-Suur C., Eklund A., Grunewald J. Analysis of regulatory T cell associated forkhead box P3 expression in the lungs of patients with sarcoidosis. Clin Exp Immunol 2008; 152: 127–37. https://doi.org/ 10.1111/j.1365-2249.2008.03609.x.
  31. Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E. Interferon-gamma-producing Th17.1 cells are increased in sarcoidosis and more prevalent than Th1 cells. Am. J. Respir Crit Care Med. 2015; 193: 1281–91. https://doi.org/ 10.1164/rccm.201507-1499OC.
  32. Ramesh R., Kozhaya L., McKevitt K., Djuretic I.M., Carlson T.J., Quintero M.A. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J. Exp. Med. 2014; 211: 89–104. https://doi.org/ 10.1084/jem.20130301.
  33. Arger N.K., Machiraju S., Allen I.E., Woodruff P.G., Koth L.L. T-bet expression in peripheral Th17.0 cells is associated with pulmonary function changes in sarcoidosis. Frontiers in Immunology 2020; 11. DOI=10.3389/fimmu.2020.01129.
  34. Tuleta I., Biener L., Pizarro C., Nickenig G., Skowasch D. Proangiogenic and profibrotic markers in pulmonary sarcoidosis. Adv Exp Med Biol. 2018; 1114: 57–66. https://doi.org/ 10.1007/5584_2018_199.
  35. Ziora D., Jastrzębski D., Adamek M., Czuba Z., Kozielski J.J., Grzanka A., Kasperska-Zajac A. Circulating concentration of markers of angiogenic activity in patients with sarcoidosis and idiopathic pulmonary fibrosis. BMC Pulm Med. 2015; 15: 113. https://doi.org/ 10.1186/s12890-015-0110-3.
  36. Koyama S., Sato E., Haniuda M., Numanami H., Nagai S., Izumi T. Decreased level of vascular endothelial growth factor in bronchoalveolar lavage fluid of normal smokers and patients with pulmonary fibrosis. Am. J. Resp Crit Care Med. 2002; 166: 382–5.
  37. Tolnay E., Kuhnen C., Voss B., Wiethege T., Muller K.M. Expression and localization of vascular endothelial growth factor and its receptor flt in pulmonary sarcoidosis. Virchows Arch. 1998; 432: 61–5.
  38. Moro-Garcia M.A., Mayo J.C., Sainz R.M., Alonso-Arias R. Influence of inflammation in the process of t lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front Immunol. 2018; 9: 339. https://doi.org/10.3389/fimmu.2018.00339.
  39. Bonham C.A., Strek M.E., Patterson K.C. From granuloma to fibrosis: sarcoidosis associated pulmonary fibrosis. Curr Opin Pulm Med. 2016; 22 (5): 484–91. https://doi.org/10.1097/MCP.0000000000000301.
  40. Dinarello C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018; 281 (1): 8–27. https://doi.org/10.1111/imr.12621.
  41. Sun Y., Lu Y., Saredy J. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 2020; 37: 101696. https://doi.org/10.1016/j.redox.2020.101696.
  42. Ziegenhagen M.W., Benner U.K., Zissel G., Zabel P., Schlaak M., Muller-Quernheim J. Sarcoidosis: TNF-α release from alveolar macrophages and serum level of sIL-2R are prognostic markers. Am. J. Respir Crit Care Med. 1997; 156: 1586–92.
  43. Baha A., Yildirim F., Stark M., Kalkanci A., Fireman E., Köktürk N. Is induced sputum a useful noninvasive tool in the diagnosis of pulmonary sarcoidosis? Turk Thorac J. 2019; 20 (4): 248–52. https://doi.org/10.5152/TurkThoracJ.2018.180147.
  44. Jeny F., Bernaudin J.F., Valeyre D. Hypoxia promotes a mixed inflammatory-fibrotic macrophages phenotype in active sarcoidosis. Front Immunol. 2021; 12: 719009. https://doi.org/10.3389/fimmu.2021.719009.
  45. Zhou E.R., Arce S. Key players and biomarkers of the adaptive immune system in the pathogenesis of sarcoidosis. Int J. Mol. Sci. 2020; 21 (19): 7398. https://doi.org/10.3390/ijms21197398.
  46. Steen E.H., Wang X., Balaji S., Butte M.J., Bollyky P.L., Keswani S.G. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv Wound Care (New Rochelle). 2020; 9 (4): 184–98. https://doi.org/10.1089/wound.2019.1032.
  47. Locke L.W., Crouser E.D., White P. IL-13-regulated macrophage polarization during granuloma formation in an in vitro human sarcoidosis model. Am. J. Respir Cell Mol. Biol. 2019; 60 (1): 84–95. https://doi.org/10.1165/rcmb.2018-0053OC.
  48. Wan J., Wu W. Hyperthermia induced HIF-1α expression of lung cancer through AKT and ERK signaling pathways. J. Exp. Clin. Cancer Res. 2016; 35 (1): 119. https://doi.org/10.1186/s13046-016-0399-7.
  49. Pagoulatos D., Pharmakakis N., Lakoumentas J., Assimakopoulou M. Hypoxia-inducible factor-1α, von Hippel-Lindau protein, and heat shock protein expression in ophthalmic pterygium and normal conjunctiva. Mol Vis. 2014; 20: 441–57.
  50. Calender A., Weichhart T., Valeyre D., Pacheco Y. Current insights in genetics of sarcoidosis: functional and clinical impacts. J. Clin. Med. 2020; 9 (8): 2633. https://doi.org/10.3390/jcm9082633.
  51. Pueringer R.J., Schwartz D.A., Dayton C.S., Gilbert S.R., Hunninghake G.W. The relationship between alveolar macrophage TNF, IL-1, and PGE2 release, alveolitis, and disease severity in sarcoidosis. Chest. 1993; 3: 832–8.
  52. Coward W.R., K. Watts, C.A. Feghali-Bostwick, A. Knox, L. Pang. Defective histone acetylation is responsible for the di- minished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Molecular and Cellular Biology. 2009; 15: 4325–39.
  53. Bauman K.A., Wettlaufer S.H., Okunishi K., Vannella K.M., Stoolman J.S., Huang S.K., Courey A.J., White E.S., Hogaboam C.M., Simon R.H. et al. The antifibrotic effects of plasminogen activation occur via prostaglandin E2 synthesis in humans and mice. J. of Clinical Investigation. 2010; 6: 1950–60.
  54. Jandl K., Kwapiszewska G. Stiffness of the Extracellular Matrix: A Regulator of Prostaglandins in Pulmonary Fibrosis?.» American J. of Respiratory Cell and Molecular Biology, 2020; 63 (6): 721–2 https://doi.org/10.1165/rcmb.2020-0398ED.
  55. Lappi-Blanco E.R., Kaarteenaho-Wiik P.K., Maasilta S., Anttila P., Pääkkö and H.J. Wolff. COX-2 is widely expressed in meta- plastic epithelium in pulmonary fibrous disorders. American J. of Clinical Pathology. 2006; 126: 717–24.
  56. Petkova D.K., Clelland C.A., Ronan J.E., Lewis S., Knox A.J. Reduced expression of cyclooxygenase (COX) in idiopathic pulmonary fibrosis and sarcoidosis. Histopathology. 2003; 4: 381–6.
  57. Kiszałkiewicz J., Piotrowski W.J., Pastuszak-Lewandoska D. et al. Altered Cyclooxygenase-2 Expression in Pulmonary Sarcoidosis is not Related to Clinical Classifications. Inflammation. 2016; 39: 1302–9. https://doi.org/10.1007/s10753-016-0362-y.
  58. Broos C.E., Hendriks R.W., Kool M. T-cell immunology in sarcoidosis: disruption of a delicate balance between helper and regulatory T-cells. Curr Opin Pulm Med. 2016; 22: 476–83. https://doi.org/ 10.1097/MCP.000000000000030392.
  59. Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E. et al. IFN-γ-Producing T-Helper 17.1 cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. Am. J. Respir Crit Care Med. 2016; 193: 1281–91. https://doi.org/ 10.1164/rccm.201507-1499OC.
  60. Zhou T., Casanova N., Pouladi N., Wang T., Lussier Y., Knox K.S. et al. Identification of Jak-STAT signaling involvement in sarcoidosis severity via a novel microRNA-regulated peripheral blood mononuclear cell gene signature. Sci Rep. 2017; 7: 4237. https://doi.org/ 10.1038/s41598-017-04109-6.
  61. Li H., Zhao X., Wang J., Zong M., Yang H. Bioinformatics analysis of gene expression profile data to screen key genes involved in pulmonary sarcoidosis. Gene. 2017; 596: 98–104. https://doi.org/ 10.1016/j.gene.2016.09.037 (95–98).
  62. Raanani P., Ben-Bassat I. Immune-mediated complications during interferon therapy in hematological patients. Acta Haematol. 2002; 107 (3): 133–44.
  63. Niewold T.B., Hua J., Lehman T.J., Harley J.B., Crow M.K. Highserum. IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 2007; 8 (6): 492–502.
  64. Rong L., Perelson A.S. Treatment of hepatitis C virus infection with interferon and small molecule direct antivirals: viral kinetics and modeling. Crit Rev Immunol. 2010; 30 (2): 131–48. https://doi.org/10.1615/critrevimmunol.v30.i2.30.
  65. Doyle M.K., Berggren R., Magnus J.H. Interferon-induced sarcoidosis. J. Clin. Rheumatol. 2006; 12 (5): 241–8.
  66. Akahoshi M. et al. Association between IFNA genotype and the risk of sarcoidosis. Hum Genet. 2004; 114 (5): 503–9.
  67. Sweiss N.J. et al. Linkage of type I interferon activity and TNF-alpha levels in serum with sarcoidosis manifestations and ancestry. PLoS One. 2011; 6 (12): e29126.
  68. Massara A., Cavazzini L., La Corte R., Trotta F. Sarcoidosis appearing during anti-tumor necrosis factor α therapy: a new «class effect» paradoxical phenomenon. Two case reports and literature review. Semin Arthritis Rheum. 2010; 39 (4): 313–9.
  69. Gupta D.L., Nagar P.K., Kamal V.K. et al. Clinical relevance of single nucleotide polymorphisms within the 13 cytokine genes in North Indian trauma hemorrhagic shock patients. Scand J. Trauma Resusc Emerg Med. 2015; 23: 96. https://doi.org/10.1186/s13049-015-0174-3.
  70. Culver D.A., Judson M.A. New advances in the management of pulmonary sarcoidosis. BMJ. 2019; 367: l5553. https://doi.org/ 10.1136/bmj.l5553.
  71. Moller D.R., Rybicki B.A., Hamzeh N.Y. et al. Genetic, Immunologic, and Environmental Basis of Sarcoidosis. Ann Am Thorac Soc. 2017; 14 (Suppl. 6): 429–36. https://doi.org/10.1513/AnnalsATS.201707-565OT.
  72. Besnard V., Jeny F. Models Contribution to the Understanding of Sarcoidosis Pathogenesis: «Are There Good Models of Sarcoidosis?» J. Clin. Med. 2020; 9 (8): 2445. https://doi.org/10.3390/jcm9082445.
  73. Croce C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 2009; 10: 704.
  74. Ворожейкин П.С., Титов И.И. Влияние структуры микрорнк животных на их биогенез. Генетика. 2020; 56 (1): 21–34. [Vorozhejkin P.S., Titov I.I. Influence of animal microRNA structure on their biogenesis. Genetika. 2020; 56 (1): 21–34 (in Russian)].
  75. Witwer K.W., Halushka M.K. Toward the promise of microRNAs – Enhancing reproducibility and rigor in microRNA research. RNA Biol. 2016; 13 (11): 1103–16. https://doi.org/10.1080/15476286.2016.1236172.
  76. Kishore A., Navratilova Z., Kolek V. et al. Expression analysis of extracellular microRNA in bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. Respirology. 2018; 23 (12): 1166–72. https://doi.org/10.1111/resp.13364.
  77. Kim C., Jadhav R.R., Gustafson C.E. et al. Defects in Antiviral T Cell Responses Inflicted by Aging-Associated miR-181a Deficiency. Cell Rep. 2019; 29 (8): 2202–16.e5. https://doi.org/10.1016/j.celrep.2019.10.044.
  78. Kosaka A., Ohkuri T., Ikeura M., Kohanbash G., Okada H. Transgene-derived overexpression of miR-17-92 in CD8+ T-cells confers enhanced cytotoxic activity. Biochem Biophys Res Commun. 2015; 458 (3): 549–54. https://doi.org/10.1016/j.bbrc.2015.02.003
  79. Pasca S., Jurj A., Petrushev B., Tomuleasa C., Matei D. MicroRNA-155 Implication in M1 Polarization and the Impact in Inflammatory Diseases. Front Immunol. 2020; 11: 625. Published 2020, Apr 15. https://doi.org/10.3389/fimmu.2020.00625.
  80. Alipoor S.D., Adcock I.M., Garssen J. et al. The roles of miRNAs as potential biomarkers in lung diseases. Eur J. Pharmacol. 2016; 791: 395–404. https://doi.org/10.1016/j.ejphar.2016.09.015.
  81. Weidner J., Bartel S., Kiliç A. et al. Spotlight on microRNAs in allergy and asthma. Allergy. 2021; 76 (6): 1661–78. https://doi.org/10.1111/all.14646.