THE ROLE OF MARKERS OF INTERCELLULAR INTERACTION IN THE DEVELOPMENT OF ATOPIC DERMATITIS

DOI: https://doi.org/10.29296/24999490-2022-05-04

E.L. Iskra(1), A.S. Iskra(1), V.O. Polyakova(2), R.A. Nasyrov(1),
1-St. Petersburg State Pediatric Medical University, Ministry of Health of the Russian Federation
194100, Russian Federation, St. Petersburg, Litovskaya Street, 2
2-St. Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation
191036, Russian Federation, St. Petersburg, Ligovsky Prospekt, 2-4

Introduction. Violation of the skin barrier can be considered as an initial stage in the development of atopic dermatitis, leading to further skin inflammation [2]. Transmembrane proteins such as claudin-1, claudin-7, occludin and E-cadherin are known to be the main components of epidermal tight junctions (TJ) [15]. Objective. The aim of the study was to research the pathogenesis of atopic dermatitis in cell culture and to assess the effect of placental hydrolysate on blood pressure. Methods. The studies were carried out on the cell culture of normal fibroblasts and the cell culture of atopic dermatitis. An immunocytochemical study was conducted to evaluate intercellular communications. Results. When the placenta hydrolysate was administered, the expression levels of occludin, claudin-1, claudin-7 and E-cadherin in blood in group IV were significantly different from those of group II. Thus, all the studied proteins contribute significantly to the development of the pathogenesis of atopic dermatitis. Conclusion. These results indicate that the studied markers play an important role in the pathogenesis of atopic dermatitis atopic dermatitis The work carried out allows us to understand in more detail the pathological processes occurring in this disease and prescribe drugs containing placental hydrolysate to restore normal epithelial differentiation
Keywords: 
transmembrane protein, atopic dermatitis, Claudine, dense compound, occluding, E-cadherin

Список литературы: 
  1. Sroka-Tomaszewska J., Trzeciak M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int J. Mol. Sci. 2021; 4130. https://doi.org/10.3390/ijms22084130.
  2. Senra M.S., Wollenberg A. Psychodermatological aspects of atopic dermatitis. The British J. of dermatology. 2014; 170 (1): 38–43. https://doi.org/10.1111/bjd.13084.
  3. Kim J., Kim B.E., Leung D.Y.M. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019; 40 (2): 84–92. https://doi.org/10.2500/aap.2019.40.4202.
  4. David Boothe W., Tarbox J.A., Tarbox M.B. Atopic Dermatitis: Pathophysiology. Adv Exp Med Biol. 2017; 1027: 21–37. https://doi.org/10.1007/978-3-319-64804-0_3.
  5. Torres T., Ferreira E.O., Gonçalo M., Mendes-Bastos P., Selores M., Filipe P. Update on Atopic Dermatitis. Acta Med Port. 2019; 32 (9): 606–13. https://doi.org/10.20344/amp.11963.
  6. Искра А.С., Искра Е.Л., Суслова Г.А., Заславский Д.В. Применение магнитотерапии в лечении и медицинской реабилитации атопического дерматита у детей и подростков. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2022; 99 (3): 66–74. https://doi.org/10.17116/kurort20229903166. [Iskra A.S., Iskra E.L., Suslova G.A., Zaslavsky D.V. The use of magnetic therapy in the treatment and medical rehabilitation of atopic dermatitis in children and adolescents. Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury. 2022; 99 (3): 66–74 (in Russian)].
  7. Yu Q.H., Yang Q. Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol Int. 2009; 33 (1): 78–82. https://doi.org/10.1016/j.cellbi.2008.09.007.
  8. Tokumasu R., Tamura A., Tsukita S. Time- and dose-dependent claudin contribution to biological functions: Lessons from claudin-1 in skin. Tissue Barriers. 2017; 5 (3): e1336194. https://doi.org/10.1080/21688370.2017.1336194.
  9. Otani T., Furuse M. Tight Junction Structure and Function Revisited Trends Cell Biol. 2020; 30 (10): 805–17. https://doi.org/10.1016/j.tcb.2020.08.004.
  10. Guttman-Yassky E., Waldman A., Ahluwalia J., Ong P.Y., Eichenfield L.F. Atopic dermatitis: pathogenesis. Semin Cutan Med Surg. 2017; 36: 100–3. https://10.12788/j.sder.2017.036.
  11. Искра Е.Л., Искра А.С., Полякова В.О., Насыров Р.А. Атопический дерматит: современный взгляд на межклеточные взаимодействия. Молекулярная медицина. 2021; 19 (4): 15–8. https://doi.org/10.29296/24999490-2021-04-03. Iskra E.L., Iskra A.S., Polyakova V.O., Nasirov R.A. The role of markers of intercellular interaction in the development of atopic dermatitis. Molekulyarnaya meditsina. 2021; 19 (4): 15–8. https://doi.org/10.29296/24999490-2021-04-03 (in Russian)].
  12. Milatz S., Breiderhoff T. One gene, two paracellular ion channels-claudin-10 in the kidney. Pflugers Arch. 2017; 469: 115–21. https://doi.org/10.1007/s00424-016-1921-7.
  13. Volksdorf T., Heilmann J., Eming S.A., Schawjinski K., Zorn-Kruppa M., Ueck C., Vidal-Y-Sy S., Windhorst S., Jücker M., Moll I., Brandner J.M. Tight Junction Proteins Claudin-1 and Occludin Are Important for Cutaneous Wound Healing. Am. J. Pathol. 2017; 187: 1301–12. https://doi.org/10.1016/j.ajpath.2017.02.006.
  14. Tsukita S., Tanaka H., Tamura A. The Claudins: From Tight Junctions to Biological Systems. Trends Biochem Sci. 2019; 44 (2): 141–52. https://doi.org/10.1016/j.tibs.2018.09.008.
  15. Ouban A. Claudin-1 role in colon cancer: An update and a review. Histol Histopathol. 2018; 33: 1013–9. https://doi.org/10.14670/HH-11-980 .
  16. 16. Bhat A.A., Syed N., Therachiyil L. et al. Claudin-1, A Double-Edged Sword in Cancer. International J. of molecular sciences. 2020; 21 (2): 569. https://doi.org/10.3390/ijms21020569.
  17. Bergmann S., von Buenau B., Vidal-Y-Sy S. et al. Claudin-1 decrease impacts epidermal barrier function in atopic dermatitis lesions dose-dependently. Sci Rep. 2020; 10 (1): 2024. https://doi.org/10.1038/s41598-020-58718-9.
  18. Титова О.Н., Куликов В.Д. Динамика показателей заболеваемости и смертности от бронхиальной астмы взрослого населения Северо-Западного федерального округа. Медицинский альянс. 2021; 9 (3): 31–9. https://doi.org/10.36422/23076348-2021-9-3-31-39. [Titova O.N., Kulikov V.D. Bronchial asthma incidence and mortality dynamics in adult population of the North-Western federal district. Medical Alliance. 2021; 9 (3): 31–9 (in Russian)].
  19. Takasawa K., Takasawa A., Akimoto T. et al. Regulatory roles of claudin-1 in cell adhesion and microvilli formation. Biochem Biophys Res Commun. 2021; 565: 36–42. https://doi.org/10.1016/j.bbrc.2021.05.070.
  20. Gonzalez-Mariscal L., Namorado Mdel C., Martin D., Sierra G., Reyes J.L. The tight junction proteins claudin-7 and -8 display a different subcellular localization at Henle’s loops and collecting ducts of rabbit kidney. Nephrol Dial Transplant. 2006; 21 (9): 2391–8. https://doi.org/10.1093/ndt/gfl255
  21. Clarke T.B., Francella N., Huegel A., Weiser J.N. Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium. Cell Host Microbe. 2011; 9 (5): 404–14. https://doi.org/10.1016/j.chom.2011.04.012.
  22. Furuse M., Hirase T., Itoh M. et al. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell. Biol. 1993; 123: 1777–88. https://doi.org/10.1083/jcb.123.6.1777.
  23. Kim S., Kim G.H. Roles of claudin-2, ZO-1 and occludin in leaky HK-2 cells. PLoS One. 2017; 12 (12): e0189221. https://doi.org/10.1371/journal.pone.0189221.
  24. Saito A.C., Higashi T., Fukazawa Y. et al. Occludin and tricellulin facilitate formation of anastomosing tight-junction strand network to improve barrier function. Mol Biol Cell. 2021; 32 (8): 722–38. https://doi.org/10.1091/mbc.E20-07-0464.
  25. Richter J.F., Hildner M., Schmauder R., Turner J.R., Schumann M., Reiche J. Occludin knockdown is not sufficient to induce transepithelial macromolecule passage. Tissue Barriers. 2019; 7: 1612661. https://doi.org/10.1080/21688370.2019.1608759.
  26. Brigidi G.S., Bamji S.X. Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol. 2011; 21 (2): 208–14. https://doi.org/10.1016/j.conb.2010.12.004.
  27. Venhuizen J.H., Jacobs F.J.C., Span P.N., Zegers M.M. P120 and E-cadherin: Double-edged swords in tumor metastasis. Semin Cancer Biol. 2020; 60: 107–20. https://doi.org/10.1016/j.semcancer.2019.07.020.
  28. Kaszak I., Witkowska-Piłaszewicz O., Niewiadomska Z., Dworecka-Kaszak B., Ngosa Toka F., Jurka P. Role of Cadherins in Cancer-A Review. Int. J. Mol. Sci. 2020; 21 (20): 7624. https://doi.org/10.3390/ijms21207624 .
  29. Wong S.H.M., Fang C.M., Chuah L.H., Leong C.O., Ngai S.C. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Critical reviews in oncology/hematology. 2018; 121: 11–22. https://doi.org/10.1016/j.critrevonc.2017.11.010 .
  30. Nelson A.M., Cong Z., Gettle S.L. et al. E-cadherin and p120ctn protein expression are lost in hidradenitis suppurativa lesions. Experimental dermatology. 2019; 28 (7): 867–71. https://doi.org/10.1111/exd.13973 .