ASSOCIATION OF POLYMORPHIC VARIANTS OF NON-ALLELIC GENES ADIPOQ, MTHFR, PON1, KCNJ11, TCF7L2, ITLN1 AND PPARG WITH CLINICAL AND LABORATORY PARAMETERS AMONG OBESE PATIENTS FROM KYRGYZ REPUBLIC

DOI: https://doi.org/10.29296/24999490-2022-05-06

J.T. Isakova(1), V.N. Kipen(2), K.A. Aitbaev(1), S.B. Mukeeva(1), Akynbek kyzy Samara(1), E.M. Mirrakhimov(3)
1-Research Institute of Molecular Biology and Medicine, Togolok-Moldo str, 3, Bishkek, 720040, Kyrgyz Republic;
2-Institute of Genetics and Cytology of The National Academy of Sciences of Belarus,
Akademicheskaya str., 27, Minsk, 220072, Republic of Belarus;
3-National Center of Cardiology and Internal Medicine, Togolok-Moldo str, 3, Bishkek, 720040, Kyrgyz Republic

Introduction. In Kyrgyzstan about 60% of the adult population suffers from lipid metabolism disorders of varying degrees. Early identification of persons at increased risk of developing obesity is of great importance, which can be achieved through the study of molecular genetic mechanisms and the identification of genetic predictors of t of disease development. Aims. to quantify the association of g.15661G>T (ADIPOQ gene), p.A222V (MTHFR gene), p.Q192R (PON1 gene), p.K23E (KCNJ11 gene), g.53341C>T (TCF7L2 gene), p.V109D (ITLN1 gene) and p.P12A (PPARG gene) polymorphic markers with clinical signs and blood indicators in obese subjects of Kyrgyz ethnicity. Material and methods. 130 patients with obesity (65 men and 65 women) along with 115 controls, including 62 men and 53 women were included. We used clinical, ancillary, biochemical and molecular tests in all subjects. PCR with restriction fragments was used to genotype polymorphic variants of interest. Statistical analysis was conducted in Microsoft Excel (Microsoft Corporation, USA) and SPSS v.20.0 (IBM, USA). Results. In patients with RR polymorphic variant of p.Q192R (PON1), BMI was on average 1.19 kg/m2 greater compared to those with QQ/QR alternative genotypes. T allele (CT/TT genotypes) of g.53341C>T (TCF7L2) genotype in obese patients was associated with 1.45 mmol/l higher fasting blood glucose; 0.49 mmol/l total cholesterol and 2.19 units of НОМА compared to subjects with СС genotype. We also found statistically significant correlations of L-alaninaminopeptidase (LAP) with p.K23E (KCNJ11) and p.P12A (PPARG) polymorphisms. Patients carrying KK genotype of p.K23E (KCNJ11) polymorphism, which is associated with higher risk of obesity in Kyrgyz (OR 2.36 (95% CI 1.11–5.03), p=0.031), LAP was 9.03 µIU/ml lower when compared to those with EE/EK genotype. Obese patients with AA genotype of p.P12A (PPARG) showed 20.1 µIU/мл higher LAP compared to PP/AP genotypes. Conclusions. Polymorphisms p.Q192R (PON1), g.53341C> T (TCF7L2), p.K23E (KCNJ11) and p.P12A (PPARG) are associated with clinical and biochemical indicators of obesity among patients of Kyrgyz nationality.
Keywords: 
obesity, gene, association, ADIPOQ, MTHFR, PON1, KCNJ11, TCF7L2, ITLN1, PPARG, Kyrgyz population, clinical and laboratory data

Список литературы: 
  1. Schutz D.D., Busetto L., Dicker D., Farpour-Lambert N., Pryke R., Toplak H., Widmer D., Yumuk V., Schutz Y. European Practical and Patient-Centred Guidelines for Adult Obesity Management in Primary Care. Obes Facts. 2019; 12 (1): 40–66. https://doi.org/10.1159/000496183
  2. Султаналиева Р.Б., Князева В.Г., Распространенность сахарного диабета 2 типа и его основные факторы риска среди городских и сельских жителей Кыргызстана. Вестник КРСУ. 2014; Т.14(4): 150-153. [Sultanalieva B.B., Knyzeva V.G. Prevalence of diabetes mellitus type 2 and main risk factors among yrban ans rural population of Kyrgyzstan. Bulletin of KRSU. 2014; 14 (4): 150–3 (in Russian)].
  3. Zayani N., Omezzine A., Boumaiza I., Achour O., Rebhi L., Rejeb J., Rejeb N.B., Abdelaziz A.B., Bouslama A. Association of ADIPOQ, leptin, LEPR, and resistin polymorphisms with obesity parameters in Hammam Sousse Sahloul Heart Study. J. Clin. Lab. Anal. 2017; 31: e22148. https://doi.org/10.1002/jcla.22148.
  4. Isakova J., Talaibekova E., Vinnikov D., Aldasheva N., Mirrakhimov E., Aldashev A. The association of Val109Asp polymorphic marker of intelectin 1 gene with abdominal obesity in Kyrgyz population. BMC Endocrine Disorders. 2018; 18: 15. https://doi.org/10.1186/s12902-018-0242-6.
  5. Lewis S., Lawlor D.A., Nordestgaard B.G., Tybjaerg-Hansen A., Ebrahim S., Zacho J., Ness A., Leary S., Smith G.D. The methylenetetrahydrofolate reductase C677T genotype and the risk of obesity in three large population-based cohorts. Eur J Endocrinol. 2008; 159 (1): 35–40. DOI: https://doi.org/10.1530/EJE-08-0056
  6. Schwanstecher C., Meyer U., Schwanstecher M. K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes. 2002; 51 (3): 875–9. https://doi.org/10.2337/diabetes.51.3.875 .
  7. Cauchi S., Nead K.T., Choquet H., Horber F., Potoczna N., Balkau B., Marre M., Charpentier G., Froguel P., Meyre D. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Med Genet. 2008; 9: 45. https://doi.org/10.1186/1471-2350-9-45.
  8. Pan H.Y., Guo L., Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010; 88 (1): 29–33. DOI: 10.1016/j.diabres.2010.01.013.
  9. Bhattacharyya T., Nicholls S.J., Topol E.J., Zhang R., Yang X., Schmitt D., Fu X., Shao M., Brennan D.M., Ellis S.G., Brennan M.L., Allayee H., Lusis A.J., Hazen S.L. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. Jama. 2008; 299: 1265–76. https://doi.org/10.1001/jama.299.11.1265
  10. Koncsos P., Seres I., Harangi M., Illyes I., Jozsa L., Gönczi F., Bajnok L., Paragh G. Human paraoxonase-1 activity in childhood obesity and its relation to leptin and adiponectin levels. Pediatr Res. 2010; 67: 309–13. https://doi.org/10.1203/PDR.0b013e3181c9fb66
  11. Li H.L., Liu D.P., Liang C.C. Paraoxonase gene polymorphisms, oxidative stress, and diseases. J Mol Med. 2003; 81: 766-779. https://doi.org/10.1007/s00109-003-0481-4.
  12. Keaney J.F., Larson M.G., Vasan R.S., Wilson P.W., Lipinska I., Corey D., Massaro J.M., Sutherland P., Vita J.A., Benjamin E.J., Study F. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003; 23: 434–9. https://doi.org/10.1161/01.ATV.0000058402.34138.11
  13. Bajnok L., Csongradi E., Seres I., Varga Z., Jeges S., Peti A., Karanyi Z., Juhasz A., Mezosi E., Nagy E.V., Paragh G. Relationship of adiponectin to serum paraoxonase 1. Atherosclerosis. 2008; 197: 363–7. https://doi.org/10.1016/j.atherosclerosis.2007.06.001
  14. Ferretti G., Bacchetti T., Moroni C., Savino S., Liuzzi A., Balzola F., Bicchiega V. Paraoxonase activity in high-density lipoproteins: a comparison between healthy and obese females. J. Clin. Endocrinol Metab. 2005; 90: 1728–33. https://doi.org/10.1210/jc.2004-0486
  15. Sunil K.K., Meher L.K., Kota S.K., Jammula S., Krishna S.V.S., Modi K.D. Implications of serum paraoxonase activity in obesity, diabetes mellitus, and dyslipidemia. Indian J. Endocrinol Metab. 2013; 17 (3): 402–12. DOI: 10.4103/2230-8210.111618
  16. Helgason A., Pálsson S., Thorleifsson G. et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet. 2007; 39 (2): 218–25. https://doi.org/10.1038/ng1960
  17. Chimienti F., Devergnas S., Pattou F., Schuit F., Garcia-Cuenca R., Vandewalle B., Kerr-Conte J., Van Lommel L., Grunwald D., Favier A., Seve M. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 2006; 119: 4199–206. https://doi.org/10.1242/jcs.03164
  18. Pearson E.R., Donnelly L.A., Kimber C., Whitley A., Doney A., McCarthy V., Hattersley A., Morris A., Palmer C. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes. 2007; 56 (8): 2178–82. https://doi.org/10.2337/db07-0440.
  19. Lindi V., Uusitupa M., Lindström J., Louheranta A., Eriksson J., Valle T., Hämäläinen H., Ilanne-Parikka P., Keinänen-Kiukaanniemi S., Laakso M., Tuomilehto J. Association of the Pro12Ala polymorphism in the PPARgamma2 gene with 3$year incidence of type 2 diabetes and body weight change in the Finnish Diabetes Prevention Study. Diabetes. 2002; 51 (8): 2581–6. https://doi.org/10.2337/diabetes.51.8.2581.
  20. Salonen J., Uimari P., Aalto J. et al. Type 2 diabetes whole genome association study in four populations: the DiaGen consortium. Am. J. Hum. Genet. 2007; 81 (2): 338–45. https://doi.org/10.1086/520599
  21. Freathy R., Timpson N., Lawlor D. et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes. 2008; 57 (5): 1419–26. http://dx.doi.org/10.2337/db07-1466.
  22. Копылов В.Ю., Белова М.А. Степень нарушения липидного обмена и состояния эпителия проксимальных почечных канальцев у лиц с ожирением и пациентов с сахарным диабетом 2 типа. Успехи современной науки и образования. 2016; 11 (6): 30–3. [Kopylov V.Yu., Belova M.A. Stepen’ narusheniya lipidnogo obmena i sostoyaniya epiteliya proksimal’nykh pochechnykh kanal’tsev u lits s ozhireniem i patsientov s sakharnym diabetom 2 tipa. Uspekhi sovremennoi nauki i obrazovaniya. 2016; 11 (6): 30–33 (in Russian)].
  23. Loder M.K., da Silva Xavier G., McDonald A, Rutter A. TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic beta-cells. Biochem Soc Trans. 2008; 36 (3): 357–9. https://doi.org/10.1042/BST0360357.
  24. Zhou D., Zhang D., Liu Y., Zhao T., Chen Z., Liu Z., Yu L., Zhang Z., Xu H., He L. The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J. Hum Genet. 2009; 54 (7): 433–5. https://doi.org/10.1038/jhg.2009.54.
  25. Sakamoto Y., Inoue H., Keshavarz P., Miyawaki K., Yamaguchi Y., Moritani M., Kunika K., Nakamura N., Yoshikawa T., Yasui N., Shiota H., Tanahashi T., Itakura M. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J. Hum Genet. 2007; 52 (10): 781–93. https://doi.org/10.1007/s10038-007-0190-x
  26. Koo B.K., Cho Y.M., Park B.L., Cheong H.S., Shin H.D., Jang H.C., Kim S.Y., Lee H.K., Park K.S. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med. 2007; 24: 178–86. https://doi.org/10.1111/j.1464-5491.2006.02050.x.
  27. Gloyn A.L., Weedon M.N., Owen K.R., Turner M.J., Knight B.A., Hitman G., Walker M., Levy J.C., Sampson M., Halford S., McCarthy M.I., Hattersley A.T., Frayling T.M. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003; 52: 568–72. https://doi.org/10.2337/diabetes.52.2.568
  28. Исакова Ж.Т., Кипень В.Н., Талайбекова Э.Т., Айтбаев К.А., Алдашева Н.М., Талайбекова Э.Т., Мукеева С.Б., Осмонкул К.М., Бейшеналиева С.Т., Миррахимов Э.М. Роль и взаимодействие полиморфных вариантов аллельных генов KCNJ11, ADIPOQ, ITLN1, LEP, TCF7L2 и PPARG в увлечении риска развития ожирения в Кыргызской Республики. Молекулярная медицина. 2021; 20 (1): 44–56. [Isakova Z.T., Kipen V.N., Akynbek K.S., Aitbaev K.A., Aldasheva N.M., Talaibekova E.T., Mukeeva S.B., Osmonkul K.M., Beishenalieva S.T., Mirrakhimov E.M. The role and interaction of polymorphic variants of non-allelic genes ADIPOQ, MTHFR, PON1, KCNJ11, TCF7L2, ITLN1, PPARG in the increase in the risk of obesity in Kyrgyz Republic. Medical Genetics. 2021; 20 (1): 44–56. https://doi.org/10.25557/2073-7998.2021.01.44-56 (in Russian)].
  29. Vaccaro O., Lapice E., Monticelli A., Giacchetti M., Castaldo I., Galasso R., Pinelli M., Donnarumma G., Rivellese A., Cocozza S., Riccardi G. Pro12Ala polymorphism of the PPARgamma2 locus modulates the relationship between energy intake and body weight in type 2 diabetic patients. Diabetes Care. 2007; 30 (5): 1156–61. DOI: 10.2337/dc06-1153