APPLICATION OF MESENCHYMAL STEM CELLS AND EXTRACELLULAR VESICLES IN INFECTIOUS TREATMENT

DOI: https://doi.org/10.29296/24999490-2022-06-03

N.M. Yudintceva(1), М.А. Shevtsov(1), М.G. Khotin(1), Т.I. Vinogradova(2), А.N. Muraviov(2, 3), А.N. Remezova(2), N.А. Mikhailova(1),
1-Institute of Cytology of the Russian Academy of Sciences (RAS) Russian Federation,
Tikhoretsky ave., 4, St. Petersburg, 194064, Russian Federation;
2-Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of Russian Federation,
Ligovsky ave., 2–4, St. Petersburg, 191036, Russian Federation;
3-Private University «Saint-Petersburg Medico-Social Institute», Kondratievsky ave., 72, lit. А, St. Petersburg, 195271, Russian Federation

Mesenchymal stem cells (MSCs) are attractive in various fields of regenerative medicine due to their therapeutic potential and complex unique properties. Basic stem cell research and the global COVID-19 pandemic have given impetus to the development of cell therapy for infectious diseases. The aim of this review is to systematize scientific data on the use of MSCs and their extracellular vesicles (MSC-EVs) in the complex treatment of infectious diseases. Material and methods: an analysis of the main foreign sources in the databases of NCBI, Elsevier, PubMed/Medline for 2004–2022 was carried out. Results. Application of MSCs and MSC-EVs in the treatment of infectious diseases has an immunomodulatory, anti-inflammatory and antibacterial effect, and also promotes the restoration of the epithelium and stimulates tissue regeneration. The use of MSC-EVs is a promising cell-free treatment strategy that allows solving the problems associated with the safety of cell therapy and increasing its effectiveness. Conclusion. In this review, experimental data and clinical trials based on MSCs and MSC-EVs for the treatment of infectious diseases are presented. MSCs and MSC-EVs can be a promising tool for the treatment of various infectious diseases in combination with antiviral drugs. Using of MSC-EVs instead of cells is a more promising strategy for cell-free treatment, since it allows solving various problems of cell therapy.
Keywords: 
mesenchymal stem cells, extracellular vesicles, infectious diseases

Список литературы: 
  1. Miceli V., Bulati M., Iannolo G., Zito G., Gallo A., Conaldi G.P. Therapeutic properties of mesenchymal stromal/stem cells: the need of cell priming for cell-free therapies in regenerative medicine. Int J. Mol. Sci. 2021; 22 (2): 763. https://doi.org/10.3390/ijms22020763.
  2. Galipeau J., Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018; 22: 824–33. https://doi.org/10.1016/j.stem.2018.05.004.
  3. Naji A., Suganuma N., Espagnolle N., Yagyu K., Baba N., Sensebé L., Deschaseaux F. Rationale for determining the functional potency of mesenchymal stem cells in preventing regulated cell death for therapeutic use. Stem Cells Transl Med. 2017; 6: 713–19. https://doi.org/10.5966/sctm.2016-0289.
  4. Caplan A.I. Mesenchymal stem cells. J Orthop Res. 1991; 9: 641–50. https://doi.org/10.1002/jor.11000 90504.
  5. Bhartiya D. The need to revisit the definition of mesenchymal and adult stem cells based on their functional attributes. Stem Cell Res. 2018; 9: 78. https://doi.org/10.1186/s13287-018-0833-1.
  6. Berebichez-Fridman R., Gómez-Garcia R., Granados-Montiel J., Berebichez-Fastlicht E., Olivos-Meza A., Granados J. The holy grail of orthopedic surgery: mesenchymal stem cells – their current uses and potential applications. Stem Cells Int. 2017; 2638305. https://doi.org/ 10.1155/2017/2638305.
  7. Choudhery M.S., Badowski M., Muise A., Pierce J., Harris D.T. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J. Transl Med. 2014; 12: 8. https://doi.org/10.1186/1479-5876-12-8.
  8. Cagliani J., Grande D., Molmenti E.P., Miller E.J., Rilo H.L.R. Immunomodulation by mesenchymal stromal cells and their clinical applications. J. Stem Cell. Regen Biol. 2017; 3: 1–26. https://doi.org/10.15436/2471-598.17.022.
  9. Kim J.H., Chris H.J., Kim H.R., Hwang Y.I. Comparison of immunological characteristics of mesenchymal stem cells from the periodontal ligament, umbilical cord, and adipose tissue. Stem Cells Int. 2018. https://doi.org/10.1155/2018/8429042.
  10. In’t Anker P.S., Scherjon S.A., Kleijburg-van der Keur C, de Groot-Swings G.M., Claas F.H., Fibbe W.E. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004; 22: 1338–45. https://doi.org/10.1634/stemcells.2004-0058.
  11. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–7. https://doi.org/10.1080/14653240600855905. PMID: 16923606.
  12. Chen Y., Shao J.Z., Xiang L.X., Dong X.J., Zhang G.R. Mesenchymal stem cells: A promising candidate in regenerative medicine. Int. J. Biochem Cell. Biol. 2008; 40 (5): 815–20. https://doi.org/10.1016/j.biocel.2008.01.007.
  13. Yudintceva N., Lomert E., Mikhailova N., Tolkunova E., Agadzhanian N., Samochernych K., Multhoff G., Timin G., Ryzhov V., Deriglazov V., Mazur A., Shevtsov M. Targeting brain tumors with mesenchymal stem cells in the experimental model of the orthotopic glioblastoma in rats. Biomedicines. 2021; 9 (11): 1592. https://doi.org/10.3390/biomedicines9111592.
  14. Crivelli, B., Chlapanidas, T., Perteghella, S., Lucarelli, E., Pascucci, L., Brini, A.T., Ferrero I., Marazzi M., Pessina A., Torre M.L. Mesenchymal stem/stromal cell extracellular vesicles: from active principle to next generation drug delivery system. J. Control Release. 2017; 262: 104–17. https://doi.org/10.1016/j.jconrel.2017.07.023.
  15. Rahmati S., Shojaei F., Shojaeian A., Rezakhani L., Dehkordi M.B. An overview of current knowledge in biological functions and potential theragnostic applications of exosomes. Chem Phys Lipids. 2020; 226: 104836. http://refhub.elsevier.com/S0009-3084(20)30140-7/sbref0150.
  16. Gould S.J.; Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell Vesicles. 2013; 2: 2892. https://doi.org/10.3402/jev.v2i0.20389.
  17. Lobov A.A., Yudintceva N.M., Mittenberg A.G., Shabelnikov S.V., Mikhailova N.A., Malashicheva A.B., Khotin M.G. Proteomic profiling of the human fetal multipotent mesenchymal stromal cells secretome. Molecules. 2020; 25 (22): 5283. https://doi.org/10.3390/molecules25225283.
  18. Gonda A., Kabagwira J., Senthil G.N., Wall N.R. Internalization of Exosomes through Receptor-Mediated Endocytosis. Mol Cancer Res. 2019; (2): 337–47. https://doi.org/10.1158/1541-7786.MCR-18-0891.
  19. Zhou Y. Yamamoto Y., Xiao Z., Ochiya T. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med. 2019; 8 (7): 1025. https://doi.org/10.3390/jcm8071025.
  20. Ghannam S., Pène J., Moquet-Torcy G., Jorgensen C., Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J. Immunol. 2010; 185 (1): 302–12. https://doi.org/10.4049/jimmunol.0902007.
  21. Spaggiari G.M., Capobianco A., Abdelrazik H., Becchetti F., Mingari M.C., Moretta L. Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin E2. Blood. 2008; 111 (3): 1327–33. https://doi.org/10.1182/blood-2007-02-074997.
  22. Melief S.M., Geutskens S.B., Fibbe W.E., Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica. 2013; 98 (6): 888–95. https://doi.org/10.3324/haematol.2012.078055.
  23. Tabera S. Pérez-Simón J.A., Diez-Campelo M., Sánchez-Abarca L.I., Blanco B., López A., Benito A., Ocio E., Sánchez-Guijo F.M., Cañizo C., Miguelet J.F.S. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica. 2008; 93 (9): 1301–9. https://doi.org/10.3324/haematol.12857.
  24. Jiang D., Muschhammer J., Qi Y., Kügler A., de Vries J.C., Saffarzadeh M., Sindrilaru A., Beken S.V., Wlaschek M., Kluth M.A., Ganss C., Frank N.Y., Frank M.H., Preissner K.T., Scharffetter-Kochanek K. Suppression of neutrophil-mediated tissue damage. A novel skill of mesenchymal stem cells. Stem Cells. 2016; 3 (9): 2393–6. DOI: 10.1002/stem.2417.
  25. Wang L.T., Liu K.J., Sytwu H.K., Yen M.L., Yen B.L. Advances in mesenchymal stem cell therapy for immune and inflammatory diseases: Use of cell-free products and human pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Transl Med. 2021; 10: 1288–303. DOI: 10.1002/sctm.21-0021.
  26. Metcalfe S.M. Mesenchymal stem cells and management of COVID-19 pneumonia. Med Drug Discov. 2020; 100019. http://refhub.elsevier.com/S0009-3084(20)30140-7/sbref014.
  27. Gentile P., Sterodimas A. Adipose-derived stromal stem cells (ASCs) as a new regenerative immediate therapy combating coronavirus (COVID-19)-induced pneumonia. Expert Opin Biol Ther. 2020; 20 (7): 711–6. DOI: 10.1080/14712598.2020.1761322.
  28. Ji F., Li L., Li Z., Jin Y., Liu W. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease. Stem Cells Transl. Med. 2020; 9 (7): 813–4. DOI: 10.1002/sctm.20-0083.
  29. Hu C., Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J. Cell. Mol. Med. 2018; 22 (3): 1428–42. http://refhub.elsevier.com/S2095-8099(20)30037-0/h0275.
  30. Leng Z., Zhu R., Hou W., Feng Y., Yang Y., Han Q., Jin R., Stambler I., Lim L. W., Su H., Moskalev A., Cano A., Chakrabarti S., Min K-J., Ellison-Hughes G., Caruso C., Jin K., Zhao R.C. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020. 11 (2): 216. http://refhub.elsevier.com/S0009-3084(20)30140-7/sbref0135.
  31. Shu, L., Niu, C., Li, R., Huang, T., Wang, Y., Huang, M., Ji N., Zheng Y., Chen X., Shi L., Wu M., Deng K., Wei J., Wang X., Cao Y., Yan J., Feng G. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res. Ther. 2020; 11: 361. https://doi.org/10.1186/s13287-020-01875-5.
  32. Vader P., Mol E.A., Pasterkamp G., Schiffelers R.M. Extracellular vesicles for drug delivery. Adv Drug Deliv. Rev. 2016; 106: 148–56. http://refhub.elsevier.com/S0009-3084(20)30140-7/sbref0205.
  33. Gupta P.S., Krishnakumar V., Sharma Y., Dinda A.K., Mohanty S. Mesenchymal stem cell derived exosomes: a nano platform for therapeutics and drug delivery in combating COVID-19. Stem Cell Rev Rep. 2020; 1: 33–43. https://doi.org/10.1007/s12015-020-10002-z.
  34. Khatri M., Richardson L.A., Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell. Res Ther. 2018; 9 (1): 17. https://doi.org/10.1186/s13287-018-0774-8.
  35. Du J., Li H., Lian J., Zhu X., Qiao L., Lin J. Stem cell therapy: a potential approach for treatment of influenza virus and coronavirus-induced acute lung injury. Stem Cell. Res Ther. 2020; 11: 192. https://doi.org/10.1186/s13287-020-01699-3.
  36. Loy H., Kuok D.I.T., Hui K.P.Y., Choi M.H.L., Yuen W., Nicholls J.M., Peiris J.S.M., Chan M.C.W. Therapeutic implications of human umbilical cord mesenchymal stromal cells in attenuating influenza A (H5N1) virusassociated acute lung injury. J. Infect Dis. 2019; 219 (2): 186–96. https://doi.org/10.1093/infdis/jiy478.
  37. Gotts J.E., Abbott J., Matthay MA. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am. J. Physiol. Lung Cell Mol Physiol. 2014; 307 (5): 395–406. https://doi.org/10.1152/ajplung.00110.2014.
  38. Kitchen S.G., Zack J.A. Stem cell-based approaches to treating HIV infection. Curr. Opin. HIV AIDS. 2011; 6: 68–73. https://doi.org/10.1097/COH.0b013e3283412370.
  39. Kandula U.R., Wake A. Promising stem cell therapy in the management of HIV and AIDS: a narrative review. Biologics. 2022; 16: 89–105. https://doi.org/10.2147/BTT.S368152.
  40. Raghuvanshi S., Sharma P., Singh S., Van Kaer L., Das G. Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells. Proc Natl Acad Sci USA. 2010; 107: 21653–8. https://doi.org/10.1073/pnas.1007967107.
  41. Khan A., Mann L., Papanna R., Lyu M.A., Singh C.R., Olson S. Mesenchymal stem cells internalize mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Sci Rep. 2017; 7: 15010. https://doi.org/10.1038/s41598-017-15290-z.
  42. Yudintceva N.M., Bogolyubova I.O., Muraviov A.N., Sheykhov M.G., Vinogradova T.I., Sokolovich E.G., Samusenko I.A., Shevtsov M.A. Application of the allogenic mesenchymal stem cells in the therapy of the bladder tuberculosis. J. Tissue Eng Regen Med. 2018; 12 (3): 1580–93. https://doi.org/10.1002/term.2583.
  43. Zhang X., Huang F., Li W., Dang J.L., Yuan J.,Wang J. Human gingiva-derived mesenchymal stem cells modulate monocytes/macrophages and alleviate atherosclerosis. Front Immunol. 2018; 9: 878. https://doi.org/10.3389/fimmu.2018.00878.
  44. Yudintceva N., Mikhailova N., Bobkov D., Yakovleva L., Nikolaev B., Krasavina D., Shevtsov M., Muraviov A., Vinogradova T., Yablonskiy P., Samusenko I., Ryzhov V., Deriglazov V., Marchenko Y., Multhoff G., Klapproth A.P., Li W.B., Nayak B., Sonawane A. Evaluation of the biodistribution of mesenchymal stem cells in a pre-clinical renal tuberculosis model by non-linear magnetic response measurements. Front Phys. 2021; 9. https://doi.org/10.3389/fphy.2021.625622.
  45. Chen S., Cui G., Peng C., Lavin M.F., Sun X., Zhang E. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther. 2018; 9: 110. https://doi.org/10.1186/s13287-018-0846-9.
  46. Poggi A., Zocchi M.R. Immunomodulatory properties of mesenchymal stromal cells: still unresolved "Yin and Yang". Curr Stem Cell Res Ther. 2019; 14: 344–50. https://doi.org/10.2174/1574888X14666181205115452.
  47. Bhattacharya D., Sayi D.S., Thamizhmani R., Bhattacharjee H., Bharadwaj A.P.., Roy A, Sugunan A.P. Emergence of multidrug-resistant vibrio cholerae O1 biotype El Tor in Port Blair, India. Am. J. Trop Med Hyg. 2012; 86 (6): 1015–7. https://doi.org/10.4269/ajtmh.2012.11-0327.
  48. Moulazadeh A., Soudi S., Bakhshi B. Immunomodulatory effects of adipose-derived mesenchymal stem cells on epithelial cells function in response to Vibrio cholera in a co-culture model. J. Allergy Asthma Immunol. 2021; 20 (5): 550–62. https://doi.org/10.18502/ijaai.v20i5.7405.
  49. Sun Y., Liu G., Zhang K., Cao Q., Liu T., Li J. Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Res Ther. 2021; 12 (1): 561. https://doi.org/10.1186/s13287-021-02629-7.