CORRECTION OF ALCOHOL-INDUCED DISORDERS OF WORKING MEMORY WITH NOOPEPT

DOI: https://doi.org/10.29296/24999490-2022-06-09

L.G. Kolik, V.G. Konkov, A.V. Sorokina, I.A. Miroshkina, K.A. Kasabov, V.S. Kudrin, A.D. Durnev
V.V. Zakusov Research Institute of Pharmacology, Baltijskaya ul. 8, Moscow, 125315, Russian Federation

Introduction. Nootropic drugs are used at all stages in treatment of behavioral disorders associated with alcohol consumption, when the correction of the functions of operational (working) memory and attention contributes to a more adequate processing and assimilation of information. The aim of this work is a comparative study of the effect of piracetam and its peptide analogue noopept on ethanol-induced non-spatial memory impairment in in vivo and ex vivo experiments. Material and methods. To reproduce alcohol-induced cognitive disturbances, a method of chronic alcohol exposure of outbred rats was used, based on providing animals with a 10% ethanol solution as the only source of fluid for 30 weeks, followed by behavioral and neurochemical studies of the pharmacological effects of noopept (1.5 mg/kg) and piracetam (100 mg/kg) after 7 daily intraperitoneal administration during ethanol withdrawal. Results. According to morphological studies, chronic ethanol consumption induced a neurotoxic effect on the cerebral cortex, as well as pronounced damage in the pyramidal neurons of the CA1 and CA3 zones of the hippocampus in rats. In the "Novel object recognition" test, noopept, like piracetam, prevented the impairment of working memory induced by ethanol withdrawal. Unlike piracetam, noopept restored the content of glutamate and gamma aminobutyric acid in the hippocampus of rats exposed to ethanol to the level of values of non-ethanol exposed rats. Thus, in experimental studies, the positive mnemotropic properties of noopept have been proven in relation to alcohol-induced disorders of non-spatial long-term working memory, which are comparable to piracetam.
Keywords: 
Noopept, piracetam, alcohol, working memory, GABA, glutamate, rats

Список литературы: 
  1. Topiwala A., Allan C.L., Valkanova V., Zsoldos E., Filippini N., Sexton C., Mahmood A., Fooks P., Singh-Manoux A., Mackay C.E., Kivimäki M., Ebmeier K.P. Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study. BMJ. 2017; 357: j2353. DOI: 10.1136/bmj.j2353.
  2. Sutherland G.T., Sheedy D., Kril J.J. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age. Alcohol Clin. Exp. Res. 2014; 38: 1–8. DOI: 10.1111/acer.12243.
  3. Cowan N. Working Memory Underpins Cognitive Development, Learning, and Education. Educ. Psychol. Rev. 2014; 26 (2): 197–223. DOI: 10.1007/s10648-013-9246-y.
  4. Petit G., Luminet O., Cordovil de Sousa Uva M., Zorbas A., Maurage P., de Timary P. Differential spontaneous recovery across cognitive abilities during detoxification period in alcohol-dependence. PLoS One. 2017; 12 (8): e0176638. DOI: 10.1371/journal.pone.0176638.
  5. Kalmár S. Adjuvant therapy with parenteral piracetam in alcohol withdrawal delirium. Orv. Hetil. 2003; 144 (19): 927–30.
  6. Wignall N.D., Brown E.S. Citicoline in addictive disorders: a review of the literature. Am. J. Drug. Alcohol Abuse. 2014; 40 (4): 262–8. DOI: 10.3109/00952990.2014.925467
  7. Brandão F., Paula-Barbosa M.M., Cadete-Leite A. Piracetam impedes hippocampal neuronal loss during withdrawal after chronic alcohol intake. Alcohol. 1995; 12 (3): 279–88. DOI: 10.1016/0741-8329(94)00107-o.
  8. Paula-Barbosa M.M., Brandão F., Pinho M.C., Andrade J.P., Madeira M.D., Cadete-Leite A. The effects of piracetam on lipofuscin of the rat cerebellar and hippocampal neurons after long-term alcohol treatment and withdrawal: a quantitative study. Alcohol Clin. Exp. Res. 1991; 15 (5): 834–8. DOI: 10.1111/j.1530-0277.1991.tb00610.x.
  9. Потупчик Т., Лопатина Т., Лопатина В. Ноотропные препараты в комплексной терапии хронического алкоголизма Врач. 2018; 29 (11): 21–9. DOI: 10.29296/25877305-2018-11-04. [Potupchik T., Lopatina T., Lopatina V. Nootropnye preparaty v kompleksnoj terapii hronicheskogo alkogolizma. Vrach. 2018; 29 (11): 21–9. DOI: 10.29296/25877305-2018-11-04 (in Russian)]
  10. Гудашева Т.А. Cтратегия создания дипептидных лекарств. Вестник Российской академии медицинских наук. 2011; 7: 8–16. [Gudasheva T. A. Ctrategija sozdanija dipeptidnyh lekarstv. Vestnik Rossijskoj akademii medicinskih nauk. 2011; 7: 8–16 (in Russian)]
  11. Островская Р.У., Гудашева Т.А. Дипептидный препарат ноопепт: дизайн, фармакологические свойства и механизм действия. Экспериментальная и клиническая фармакология. 2021; 84 (2): 41–52. DOI: 10.30906/0869-2092-2021-84-2-41-52. [Ostrovskaja R. U., Gudasheva T. A. Dipeptidnyj preparat noopept: dizajn, farmakologicheskie svojstva i mehanizm dejstvija. Jeksperimental'naja i klinicheskaja farmakologija. 2021; 84 (2): 41–52. DOI: 10.30906/0869-2092-2021-84-2-41-52 (in Russian)]
  12. Незнамов Г.Г., Телешова Е.С. Результаты сравнительного изучения ноопепта и пирацетама при лечении больных с легкими когнитивными нарушениями при органических заболеваниях головного мозга сосудистого и травматического генеза. Журнал неврологии и психиатрии им. C.C. Корсакова. 2008; 108 (3): 33–42. [Neznamov G. G., Teleshova E. S. Rezul'taty sravnitel'nogo izuchenija noopepta i piracetama pri lechenii bol'nyh s legkimi kognitivnymi narushenijami pri organicheskih zabolevanijah golovnogo mozga sosudistogo i travmaticheskogo geneza. Zhurnal nevrologii i psihiatrii im. C.C. Korsakova. 2008; 108 (3): 33–42 (in Russian)]
  13. Yang Y., Feng J., Xu F., Wang J. Piracetam inhibits ethanol (EtOH)-induced memory deficit by mediating multiple pathways. Brain Res. 2017; 1676: 83–90. DOI: 10.1016/j.brainres.2017.09.013.
  14. Nadorova A.V., Kolik L.G., Klodt P.M., Narkevich V.B., Napljokova P.L., Kozlovskaja M.M., Kudrin V.S. The relationship between the anxiolytic action of selank and the level of serotonin in brain structures during the modeling of alcohol abstinence in rats. Neurochemical J. 2014; 8 (2): 115–20. DOI: 10.1134/S1819712414020081.
  15. Kolik L.G., Nadorova A.V., Kon’kov V.G., Narkevich V.B., Kudrin V.S. Heptapeptide Analogue of Tuftsin Prevents the Increase in the Content of Inhibitory Amino Acids in the Brain When Modeling Alcohol Withdrawal in Rats. Neurochem. J. 2021; 15: 196–202. DOI: 10.1134/S1819712421020082
  16. Сапожников А.Г., Доросевич А.Е. Гистологическая и микроскопическая техника: Руководство. Рос. отд-ние Междунар. акад. патологии, Смолен. ассоц. ученых. Смоленск: САУ, 2000; 475. [Sapozhnikov A.G., Dorosevich A.E. Gistologicheskaja i mikroskopicheskaja tehnika: Rukovodstvo. Ros. otd-nie Mezhdunar. akad. patologii, Smolen. assoc. uchenyh. Smolensk: SAU, 2000; 475 (in Russian)]
  17. Саркисов Д.С., Петров Ю.Л. Микроскопическая техника (Руководство для врачей и лаборантов). М.: Медицина, 1996; 544. [Sarkisov D. S., Petrov Ju. L. Mikroskopicheskaja tehnika (Rukovodstvo dlja vrachej i laborantov). M.: Medicina, 1996; 544 (in Russian)]
  18. Garman R.N. Histology of the central nervous system. Toxicol. Pathol. 2011; 39 (1): 22–35. DOI: 10.1177/0192623310389621.
  19. Shimoda S., Ozawa T., Ichitani Y., Yamada K. Long-term associative memory in rats: Effects of familiarization period in object-place-context recognition test. PLoS One. 2021; 16 (7): e0254570. DOI: 10.1371/journal.pone.0254570.
  20. Jellinek E.M., McFarland R.A. Analysis of psychological experiments on the effects of alcohol. Q. J. Stud. Alcohol. 1940; 1: 272–371.
  21. Givens B., Williams J.M., Gill T.M. Septohippocampal pathway as a site for the memory-impairing effects of ethanol. Hippocampus. 2000; 10 (1): 111–21. DOI: 10.1002/(SICI)1098-1063(2000)10:1<111::AID-HIPO12>3.0.CO;2-1.
  22. Franke H., Kittner H., Berger P., Wirkner K., Schramek J. The reaction of astrocytes and neurons in the hippocampus of adult rats during chronic ethanol treatment and correlations to behavioral impairments. Alcohol. 1997; 14 (5): 445–54. DOI: 10.1016/s0741-8329(96)00209-1.
  23. Charlton A.J., Perry C.J. The Effect of Chronic Alcohol on Cognitive Decline: Do Variations in Methodology Impact Study Outcome? An Overview of Research From the Past 5 Years. Frontiers in Neuroscience. 2022; 16: E.836827. DOI: 10.3389/fnins.2022.836827
  24. Brandao F., Cadete-Leite A., Andrade J.P., Madeira M.D., Paula-Barbosa M.M. Piracetam promotes mossy fiber synaptic reorganization in rats withdrawn from alcohol. Alcohol. 1996; 13: 239–49. DOI: 10.1016/0741-8329(95)02050-0.
  25. Hansen A.W., Almeida F.B., Bandiera S., Pulcinelli R.R., Caletti G., Agnes G., Fernandes de Paula L., Nietiedt N.A., Nin M.S., Tannhauser Barros H. M., Gomez R. Correlations between subunits of GABAA and NMDA receptors after chronic alcohol treatment or withdrawal, and the effect of taurine in the hippocampus of rats. Alcohol. 2020; 82: 63–70. DOI: 10.1016/j.alcohol.2019.08.005.
  26. Скребицкий В.Г., Капай Н.А., Деревягин В.И., Кондратенко Р.В. Действие фармакологических препаратов на синаптическую активность гиппокампа. Анналы клинической и экспериментальной неврологии. 2008; 2 (2): 23–7. DOI: 10.17816/psaic406. [Skrebickij V.G., Kapaj N.A., Derevjagin V.I., Kondratenko R.V. Dejstvie farmakologicheskih preparatov na sinapticheskuju aktivnost' gippokampa. Annaly klinicheskoj i jeksperimental'noj nevrologii. 2008; 2 (2): 23–7. DOI: 10.17816/psaic406 (in Russian)]