АНЕВРИЗМЫ АОРТЫ: ЭТИОЛОГИЯ И ПАТОМОРФОЛОГИЯ

DOI: https://doi.org/None

Е.М. Пальцева, доктор медицинских наук Российский научный центр хирургии им. академика Б.В. Петровского, Российская Федерация, 119991, Москва, Абрикосовский пер., д. 2 E-mail: [email protected]

В обзоре рассматриваются этиологические факторы, особенности патогенеза и патоморфологии аневризм грудного и брюшного отделов аорты. Описаны морфологические и биологические характеристики стенки аневризм грудной аорты при болезни Марфана, синдромах Элерса–Данлоса, Лойе–Дитца, Тернера, Нунана, коарктации аорты и двустворчатом клапане аорты, артериальной гипертензии, артериите Такаясу, аневризмах инфекционной природы. Представлены данные о роли клеточных элементов стенки артерии, различных компонентов внеклеточного матрикса и разрушающих их протеиназ, а также этиологических факторов в формировании аневризм брюшной аорты.
Ключевые слова: 
аневризмы грудной аорты, аневризмы брюшной аорты, кистозная дегенерация медиальной оболочки, коллагеновые волокна, протеиназы, воспаление
Для цитирования: 
Пальцева Е.М. АНЕВРИЗМЫ АОРТЫ: ЭТИОЛОГИЯ И ПАТОМОРФОЛОГИЯ. Молекулярная медицина, 2015; (4): -

Список литературы: 
  1. Комаров Р.Н. Пути улучшения результатов лечения больных торакоабдоминальными аневризмами аорты. Дисс. … канд. мед. наук. М.: 2010. [Komarov R.N. The ways of improvement of treatment of patients with thoraco-abdominal aortic aneurysms. Diss… cand. med. sci. M.: 2010 (in Russian)]
  2. Danyi P., Elefteriades J.A., Jovin J.S., Medical Therapy of Thoracic Aortic Aneurysms Are We There Yet? Circulation. 2011; 124: 1469–76.
  3. Shimizu K., Mitchell R.N., Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 987–94.
  4. Wilson W.R., Schwalbe E.C., Jones J.L., Bell P.R., Thompson M.M. Matrix metalloproteinase 8 (neutrophil collagenase in the pathogenesis of abdominal aortic aneurism. Br. J. Surg. 2005; 92 (7): 828–33.
  5. Robins and Cotran pathologic basis of disease. 8th ed. 2010; 135–82.
  6. Yuan S-M., Jing H. Cystic medial necrosis: pathological findings and clinical implications. Rev. Bras. Cir. Cardiovasc. 2011; 26 (1): 107–15.
  7. Cozijnsen L., Braam R.L., Waalewijn R.A., Schepens M.A.A.M., Loeys B.L., van Oosterhout M.F.M. et al. What is new in dilatation of the ascending aorta? Review of current literature and practical advice for the cardiologist. Circulation. 2011; 213: 924–8.
  8. Chung A.W.Y., Yeung K.A., Sandor G.G.S., Judge D.P., Dietz H.C., van Breemen C. Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome. Circ. Res. 2007; 101: 512–22.
  9. Lavall D., Schäfers H.-J., Böhm M., Laufs U. Aneurysms of the ascending aorta. Dtsch. Arztebl. Int. 2012; 109 (13): 227–33.
  10. Jain D., Dietz H.C., Oswald G.L., Maleszewski J.J., Halushka M.K. Causes and histopathology of ascending aortic disease in children and young adults. Cardiovasc. Pathol. 2011; 20 (1): 15–25.
  11. Константинов Б.А., Белов Ю.В., Кузнечевский Ф.В. Аневризмы восходящего отдела и дуги аорты. М.: АСТ, Астрель, 2006; 51–76. [Konstantinov B.A., Belov Yu.V., Kuznechevsky F.V. Aneurysms of the ascending aorta and arch of aorta. М.: Astrel, 2006; 51–76 (in Russian)]
  12. Taketani T., Imai Y., Morota T., Maemura K., Morita H., Hayashi D. et al. Altered patterns of gene expression specific to thoracic aneurysms: microarray analysis of surgically resected specimen. Int. Heart J. 2005; 46 (2): 265–77.
  13. Jones J.A., Spinale F.G., Ikonomidis J.S. Transforming growth factor-beta signaling in thoracic aortic aneurysm development: a paradox in pathogenesis. J. Vasc. Res. 2009; 46 (2): 119–37.
  14. Robinson P.N., Arteaga-Solis E., Baldock C., Collod-Béroud G., Booms P., De Paepe A. et al. The molecular genetics of Marfan syndrome and related disorders. J. Med. Genet. 2006; 43: 769–87.
  15. He R., Guo D-C., Sun W., Papke C.L., Duraisamy S., Estrera A.L. et al. Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms and sporadic aneurysms. J. Thorac. Cardiovasc. Surg. 2008; 136(4): 922-929.
  16. Zilocchi M., Macedo T.A., Oderich G.S., Vrtiska T.J., Biondetti P.R., Stanson A.W. Vascular Ehlers-Danlos syndrome: imaging findings. AJR. 2007; 189: 712–9.
  17. Germain D.P. Ehlers-Danlos syndrome type IV. Orphanet J. Rare Dis. 2007; 2: 32–40.
  18. Choo J.T.L., Tan T.H., Lai A.H.M., Wong K.Y. Loeys-Dietz syndrome: a Marfan-like syndrome associated with aggressive vasculopathy. Singapore Med. J. 2009; 50 (10): e353.
  19. Pisanoa C., Maresic E., Balistrerib C.R., Candore G., Merlo D., Fattouch K. et al. Histological and genetic studies in patients with bicuspid aortic valve and ascending aorta complications. Interactive CardioVasc. Thor. Surg. 2012; 14: 300–6.
  20. Nataatmadja M., West M., West J., Summers K., Walker P., Nagata M., Watanabe T. Abnormal extracellular matrix protein transport associated with increased apoptosis of vascular smooth muscle cells in Marfan syndrome and bicuspid aortic valve thoracic aortic aneurysm. Circulation. 2003; 108 (Suppl. II): 329–34.
  21. Bondy C.A. Aortic dissection in Turner syndrome. Curr. Opin. Cardiol. 2008; 23 (6): 519–26.
  22. Matura L.A., Ho V.B., Rosing D.R., Bondy C.A. Aortic dilatation and dissection in Turner syndrome. Circulation. 2007; 116: 1663–70.
  23. Mortensen K.H., Hjerrild B.E., Stochholm K., Andersen N.H., Sørensen K.E., Lundorf E. et al. Dilation of the ascending aorta in Turner syndrome – a prospective cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2011; 13: 24–32.
  24. Nienaber C. A., Eagle K.A. Aortic dissection: new frontiers in diagnosis and management: part I: from etiology to diagnostic strategies. Circulation. 2003; 108: 628–35.
  25. Thawait S.K., Akay A., Jhirad R.H., El-Daher N. Group B Streptococcus mycotic aneurysm of the abdominal aorta: report of a case and review of the literature. Yale J. Biol. Med. 2012; 85: 97–104.
  26. Rasoul S., Jaspers Jr. R., van Wijngaarden J. Mycotic aneurysm of the aortic arch. Neth. Heart J. 2011; 19: 397–8.
  27. Nseir B., Cutrona A.F. Salmonella-related mycotic pseudoaneurysm. Cleveland Cli. J. Med. 2009; 76: 315–6.
  28. Pätiläa T., Kurkib T., Ihlberga L. Isolated gonococcal ascending aorta aneurysm. Interactive CardioVasc. Thor. Surg. 2012; 15: 183–5.
  29. Zipes D.P., Libby P., Bonow R.O., Braunwald E. Braunwals’s heart disease. A textbook of cardiovascular medicine. 7th ed. 2005; 1403–36.
  30. Annambhotla S., Bourgeois S., Wang X., Lin P.H., Yao Q., Chen C. Recent advances in molecular mechanisms of abdominal aortic aneurysm formation. World J. Surg. 2008; 32 (6): 976–86.
  31. Dua M.M., Dalman R.L. Hemodynamic influences on abdominal aortic aneurysm disease: application of biomechanics to aneurysm pathophysiology. Vascul. Pharmacol. 2010; 53 (1–2): 11–21.
  32. Laughlin G.A., Allison M.A., Jensky N., Aboyans V., Wong N.D., Detrano R., Criqui M.H. Abdominal aortic diameter and vascular atherosclerosis: the multi-ethnic study of atherosclerosis. Eur. J. Vasc. Endovasc. Surg. 2011; 41 (4): 481–7.
  33. Hannawa K.K., Eliason J.L., Upchurch G.R.Jr. Gender differences in abdominal aortic aneurysms. Vascular. 2009; 17 (Suppl. 1): 30–9.
  34. Lipp C., Lohoefer F., Reeps C., Rudelius M., Baummann M., Heemann U. et al. Expression of a disintegrin and metalloprotease in human abdominal aortic aneurysms. J. Vasc. Res. 2012; 49: 198–206.
  35. Satoh K., Tsukamoto M., Shindoh M., Totsuka Y., Oda T., Matsumoto K. Increased expression of tenascin-X in thoracic and abdominal aortic aneurysm tissues. Biol. Pharm. Bull. 2010; 33 (11): 1898–902.
  36. Swedenborg J., Mäyränpää M.I., Kovanen P.T. Mast cells: important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 2011; 31: 734–40.
  37. Trollope A.F., Golledge J. Angiopoietins, abdominal aortic aneurysm and atherosclerosis. Atherosclerosis. 2011; 214 (2): 237–43.
  38. Goodall S., Porter K.E., Bell P.R., Thompson M.M. Enhanced invasive properties exhibited by smooth muscle cells are associated with elevated production of MMP-2 in patients with aortic aneurisms. Eur. J. Vasc. Endovasc. Surg. 2002; 24 (1): 72–80.
  39. Annabi B., Shedid D., Ghosn P., Kenigsberg R.L., Desrosiers R.R., Bojanowski M.W. et al. Differential regulation of matrix metalloproteinase activities in abdominal aortic aneurisms. J. Vasc. Surg. 2002; 35 (3): 539–46.
  40. Patel M.I., Melrose J., Ghosh P., Appleberg M. Increased synthesis of matrix metalloproteinases by aortic smooth muscle cells is implicated in the etiopathogenesis of abdominal aortic aneurysms. J. Vasc. Surg. 1996; 24 (1): 82–92.
  41. Wang Q., Ren J., Morgan S., Liu Z., Dou C., Liu B. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm. PLoS One. 2014; 9 (3): e92053.
  42. Liu J., Sukhova G.K., Yang J.T., Sun J., Ma L., Ren A. et al. Cathepsin L expression and regulation in human abdominal aortic aneurism, atherosclerosis, and vascular cells. Atherosclerosis. 2006; 184 (2): 302–11.
  43. Lohoefer F., Reeps C., Lipp C., Rudelius M., Haert F., Matevossian E. et al. Quantitative expression and localization of cysteine and aspartic proteases in human abdominal aortic aneurysms. Experimental & Molecular Medicine. 2014; 46: e95.
  44. Lv B.-J., Lindholt J.S., Cheng X., Wang J., Shi G.-P. Plasma Cathepsin S and Cystatin C levels and risk of abdominal aortic aneurysm: a randomized population–based study. PLoS One. 2012; 7 (7): e41813.
  45. Houard X., Rouzet F., Touat Z., Philippe M., Dominguez M., Fontaine V. et al. Topology of the fibrinolytic system within the mural thrombus of human abdominal aortic aneurysms. J. Pathol. 2007; 212 (1): 20–8.
  46. Louwrens H.D., Kwaan H.C., Pearce W.H., Yao J.S., Verrusio E. Plasminogen activator and plasminogen activator inhibitor expression by normal and aneurismal human aortic smooth muscle cells in culture. Eur. J. Vasc. Endovasc. Surg. 1995; 10 (3): 289–93.
  47. Satoh H., Nakamura M., Satoh M., Nakajima T., Izumoto H., Maesawa C. et al. Expression and localization of tumor necrosis factor-α and its converting enzyme in human abdominal aortic aneurism. Clin. Sci. 2004; 106: 301–6.
  48. McCormick M.L., Gavrila D., Weintraub N.L. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 461–9.
  49. Cheuk B.L., Cheng S.W. Differential expression of integrin alpha5beta1 in human abdominal aortic aneurysm and healthy aortic tissues and its significance in pathogenesis. J. Surg. Res. 2004; 118 (2): 176–82.
  50. Cheuk B.L., Cheng S.W. Expression of integrin alpha5beta1 and the relationship to collagen and elastin content in human suprarenal and infrarenal aortas. Vasc. Endovascular Surg. 2005; 39 (3): 245–51.
  51. Panek B., Gacko M., Palka J. Metalloproteinases, insulin-like growth factor-1 and binding proteins in aortic aneurysm. Int. J. Exp. Pathol. 2004; 85, # 3: 159–64.
  52. Hoshina K., Koyama H., Miyata T., Shigematsu H., Takato T., Dalman R.L., Nagawa H. et al. Aortic wall cell proliferation via basic fibroblast growth factor gene transfer limits progression of experimental abdominal aortic aneurysm. J. Vasc. Surg. 2004; 40 (3): 512–8.
  53. Dai J., Losy F., Guinault A.M., Pages C., Anegon I., Desgranges P. et al. Overexpression of transforming growth factor-beta1 stabilizes already-formed aortic aneurysms: a first approach to induction of functional healing by endovascular gene therapy. Circulation. 2005; 112 (7): 1008–15.
  54. Michel J.-B., Thaunat O., Houard X., Meilhac O., Caligiuri G., Nicoletti A. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1259–68.