ИСПОЛЬЗОВАНИЕ ПАРАФИНОВЫХ БЛОКОВ СО ЗЛОКАЧЕСТВЕННЫМИ ОПУХОЛЯМИ ДЛЯ ОПРЕДЕЛЕНИЯ ГЕНЕТИЧЕСКОЙ ИДЕНТИЧНОСТИ ОБРАЗЦОВ

DOI: https://doi.org/None

О.В. Должанский (1), доктор медицинских наук, Ю.И. Пиголкин (2), член-корреспондент РАН, профессор, Е.М. Пальцева (1), доктор медицинских наук, профессор, С.А. Коростылев (3), доктор медицинских наук, доцент, И.В. Канивец (3), Д.Н. Федоров (1), кандидат медицинских наук, доцент 1 -Российский научный центр хирургии им. академика Б.В. Петровского, Российская Федеpация, 119991, Москва, ГСП-1, Абрикосовский пер., д. 2; 2 -Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России, Российская Федеpация, 119991, Москва, ул. Трубецкая, д. 8, стр. 2; 3 -Медико-генетический научный центр, Российская Федерация, 115478, Москва, ул. Москворечье, д. 1 E-mail: [email protected]

На основе анализа литературных данных оценивали критерии пригодности парафиновых блоков со злокачественными опухолями для решения вопроса о генетической идентичности образцов. С целью предотвращения потенциальных ошибок для подобных анализов не рекомендуется использовать карциномы желудочно-кишечного тракта, молочной железы, а также низкодифференцированные опухоли яичников; в сравниваемых образцах не должно быть рецидивных или метастатических опухолей, новообразований, подвергшихся лучевой или лекарственной противоопухолевой терапии, материала с наличием микросателлитной нестабильности. В сомнительных случаях важно проводить иммуногистохимическое исследование на микросателлитную нестабильность, а также сравнивать генотип опухоли и ДНК крови пациентов.
Ключевые слова: 
генетическая идентичность материала, опухоль, парафиновые блоки
Для цитирования: 
Должанский О.В., Пиголкин Ю.И., Пальцева Е.М., Коростылев С.А., Канивец И.В., Федоров Д.Н. ИСПОЛЬЗОВАНИЕ ПАРАФИНОВЫХ БЛОКОВ СО ЗЛОКАЧЕСТВЕННЫМИ ОПУХОЛЯМИ ДЛЯ ОПРЕДЕЛЕНИЯ ГЕНЕТИЧЕСКОЙ ИДЕНТИЧНОСТИ ОБРАЗЦОВ. Молекулярная медицина, 2016; (4): -

Список литературы: 
  1. Jeffreys A.J., Wilson V., Thein S.L. Individual-specific «fingerprints» of human DNA. Nature. 1985; 316 (6023): 76–9.
  2. Gill P., Jeffreys A.J., Werrett D.J. Forensic application of DNA «Fingerprints». Nature. 1985 ; 318 (6046): 577–9.
  3. Edwards A., Civitello A., Hammond H.A., Caskey C.T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum Genet. 1991; 49 (4): 746–56.
  4. Bornman D.M., Hester M.E., Schuetter J.M. et all. Short-read, high-throughput sequencing technology for STR genotyping. Biotech Rapid Dispatches. 2012; 2012: 1–6.
  5. Alonso A., Alves C., Suárez-Mier M.P. et all. Mitochondrial DNA haplotyping revealed the presence of mixed up benign and neoplastic tissue sections from two individuals on the same prostatic biopsy slide. J. Clin. Pathol. 2005; 58 (1): 83–6.
  6. Huijsmans R., Damen J., van der Linden H., Hermans M. Single nucleotide polymorphism profiling assay to confirm the identity of human tissues. J. Mol. Diagn. 2007; 9 (2): 205–13.
  7. Egeland T., Fonneløp A.E., Berg P.R. et all. Complex mixtures: a critical examination of a paper by Homer et al. Forensic Sci Int Genet. 2012; 6 (1): 64–9.
  8. Homer N., Szelinger S., Redman M. et all. Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays. PLoS Genet. 2008; 4 (8): e1000167.
  9. Иванов П.Л. Индивидуализация человека и идентификация личности: молекулярная биология в судебной экспертизе. Вестник РАН. 2003; 73 (12): 1085–97. [Ivanov P.L. Individualizacija cheloveka i identifikacija lichnosti: molekuljarnaja biologija v sudebnoj jekspertize, Vestnik RAN. 2003; 73 (12): 1085–97 (in Russian)]
  10. Пиголкин Ю.И. Атлас по судебной медицине. М.: ГЭОТАР-Медиа, 2010; 376. [Pigolkin Ju.I. Atlas po sudebnoj medicine. М.: GEOTAR-Media, 2010; 376 (in Russian)]
  11. Bossuyt V., Buza N., Ngo N.T. et all. Cancerous ‘floater’: a lesson learned about tissue identity testing, endometrial cancer and microsatellite instability. Mod Pathol. 2013; 26 (9): 1264–9.
  12. Bandelt H.J., Salas A. Contamination and sample mix-up can best explain some patterns of mtDNA instabilities in buccal cells and oral squamous cell carcinoma. BMC Cancer. 2009; 9: 113.
  13. Fisher C. The diversity of soft tissue tumours with EWSR1 gene rearrangements: a review. Histopathology. 2014; 64 (1): 134–50.
  14. Poetsch M., Petersmann A., Woenckhaus C. et all. Evaluation of allelic alterations in short tandem repeats in different kinds of solid tumors--possible pitfalls in forensic casework. Forensic Sci Int. 2004; 145 (1): 1–6.
  15. Schwark T., Bachmann C., von Wurmb-Schwark N. STR typing of ductal adenocarcinomas of the pancreas and healthy control tissue in 18 individuals. Leg Med (Tokyo). 2004; 6 (3): 170–3.
  16. Filoglu G., Bulbul O., Rayimoglu G. et all. Evaluation of reliability on STR typing at leukemic patients used for forensic purposes. Mol. Biol. Rep. 2014; 41 (6): 3961–72.
  17. Deger R.B., Faruqi S.A., Noumoff J.S. Karyotypic analysis of 32 malignant epithelial ovarian tumors. Cancer Genet Cytogenet. 1997; 96 (2): 166–73.
  18. Pai C.Y., Hsieh L.L., Tsai C.W. et all. Allelic alterations at the STR markers in the buccal tissue cells of oral cancer patients and the oral epithelial cells of healthy betel quid-chewers: an evaluation of forensic applicability. Forensic Sci Int. 2002; 129 (3): 158–67.
  19. Birch A.H., Arcand S.L., Oros K.K. et all. Chromosome 3 anomalies investigated by genome wide SNP analysis of benign, low malignant potential and low grade ovarian serous tumours. PLoS One. 2011; 6 (12): e28250.
  20. Mathot L., Falk-Sörqvist E., Moens L. et all. Automated genotyping of biobank samples by multiplex amplification of insertion/deletion polymorphisms. PLoS One. 2012; 7 (12): e52750.
  21. Fang J.X., Li C.T., Xiao L. Evaluation of allelic alterations in 13 CODIS STR loci in tumor tissues from human digestive system. Fa Yi Xue Za Zhi. 2007; 23 (4): 280–2.
  22. Ng C.K., Cooke S.L., Howe K. et all. The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer. J Pathol. 2012; 226 (5): 703–12.
  23. Ruan X., Liu H., Boardman L., Kocher J.P. Genome-wide analysis of loss of heterozygosity in breast infiltrating ductal carcinoma distant normal tissue highlights arm specific enrichment and expansion across tumor stages. PLoS One. 2014; 9 (4): e95783.
  24. Pelotti S., Ceccardi S., Alù M. et all. Cancerous tissues in forensic genetic analysis.Genet Test. 2007; 11 (4): 397–400.
  25. Li Q., Li M., Ma L. et all. A method to evaluate genome-wide methylation in archival formalin-fixed, paraffin-embedded ovarian epithelial cells. PLoS One. 2014; 9 (8): e104481.
  26. Holland A.J., Cleveland D.W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol. Cell. Biol. 2009; 10 (7): 478–87.
  27. Mandahl N., Johansson B., Mertens F., Mitelman F. Disease-associated patterns of disomic chromosomes in hyperhaploid neoplasms. Genes Chromosomes Cancer. 2012; 51 (6): 536–44.
  28. Hennig Y., Wanschura S., Deichert U. et all. Rearrangements of the high mobility group protein family genes and the molecular genetic origin of uterine leiomyomas and endometrial polyps. Mol. Hum Reprod. 1996; 2 (4): 277–83.
  29. Lips E.H., Dierssen J.W., van Eijk R. et all. Reliable high-throughput genotyping and loss-of-heterozygosity detection in formalin-fixed, paraffin-embedded tumors using single nucleotide polymorphism arrays. Cancer Res. 2005; 65 (22): 10188–91.
  30. Liu Z., Li A., Schulz V., Chen M., Tuck D. MixHMM: inferring copy number variation and allelic imbalance using SNP arrays and tumor samples mixed with stromal cells. PLoS One. 2010; 5 (6): e10909.
  31. Haverty P.M., Hon L.S., Kaminker J.S. et all. High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors. BMC Med Genomics. 2009; 2: 21.
  32. Krishnamurti U., Sasatomi E., Swalsky P.A. et all. Microdissection-based mutational genotyping of serous borderline tumors of the ovary. Int. J. Gynecol Pathol. 2005; 24 (1): 56–61.
  33. Cavalli L.R., Singh B., Isaacs C. et all. Loss of heterozygosity in normal breast epithelial tissue and benign breast lesions in BRCA1/2 carriers with breast cancer. Cancer Genet Cytogenet. 2004; 149 (1): 38–43.
  34. Liu Y., Gu J.Y., Ou Y. et all. Changes of T-cell clonality after induction-cultivation of peripheral T lymphocytes in adoptive immunotherapy for leukemias. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2009; 17 (3): 621–6.
  35. Tosca L., Brisset S., Petit F.M. et all. Recurrent 70.8 Mb 4q22.2q32.3 duplication due to ovarian germinal mosaicism. Eur. J. Hum Genet. 2010; 18 (8): 882–8.
  36. Jividen K., Li H. Chimeric RNAs generated by intergenic splicing in normal and cancer cells. Genes Chromosomes Cancer. 2014; 53 (12): 963–71.
  37. Pejovic T., Heim S., Mandahl N. et al. Consistent occurrence of a 19p+ marker chromosome and loss of 11p material in ovarian seropapillary cystadenocarcinomas. Genes Chromosomes Cancer. 1989; 1 (2): 167–71.
  38. Mertens F., Johansson B., Höglund M., Mitelman F. Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res. 1997; 57 (13): 2765–80.
  39. Nishizaki T., De Vries S., Chew K. et all. Genetic alterations in primary breast cancers and their metastases: direct comparison using modified comparative genomic hybridization. Genes Chromosomes Cancer. Genes Chromosomes Cancer. 1997; 19 (4): 267–72.
  40. Kiechle-Schwarz M., Bauknecht T., Schmidt J. et all. Recurrent cytogenetic aberrations in human ovarian carcinomas. Cancer Detect Prev. 1994; 55 (2): 198–205.
  41. Szczepanski T., van der Velden V.H., Waanders E., Kuiper R.P. et all. Late recurrence of childhood T-cell acute lymphoblastic leukemia frequently represents a second leukemia rather than a relapse: first evidence for genetic predisposition. J. Clin. Oncol. 2011; 29 (12): 1643–9.
  42. Antonescu C.R., Dal Cin P. Promiscuous genes involved in recurrent chromosomal translocations in soft tissue tumours. Pathology. 2014; 46 (2): 105–12.
  43. Saito N., Hatori T., Aoki K. et all. Dynamics of global gene expression changes during brain metastasis formation. Neuropathology. 2009; 29 (4): 389–97.
  44. Ondrejka S.L., Schaeffer D.F., Jakubowski M.A. et all. Does neoadjuvant therapy alter KRAS and/or MSI results in rectal adenocarcinoma testing? Am. J. Surg. Pathol. 2011; 35 (9): 1327–30.
  45. Arthur L.M., Turnbull A.K., Webber V.L. et all. Molecular changes in lobular breast cancers in response to endocrine therapy. Cancer Res. 2014; 74 (19): 5371–6.