ГЕНЫ МОНОРЕЗИСТЕНТНОСТИ КАК МАРКЕР ДЛЯ ПЕРСОНАЛИЗАЦИИ ХИМИОТЕРАПИИ РАКА ЛЕГКОГО

DOI: https://doi.org/10.29296/24999490-2018-01-01

М.М. Цыганов, кандидат биологических наук, И.В. Дерюшева, Е.О. Родионов, М.К. Ибрагимова, С.В. Миллер, доктор медицинских наук, Н.В. Литвяков, доктор биологических наук Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук, Российская Федерация, 634050, Томск, Кооперативный пер., д. 5 E-mail: [email protected]

Результаты хирургического лечения рака легкого (РЛ) II–III стадии остаются неудовлетворительными, а используемая химиотерапия не дает существенного прироста выживаемости больных. Это объясняется недостаточно эффективным подбором химиопрепаратов и тактики лечения конкретного больного, основанной только на использовании стандартных клинических параметров. Существенная роль в формировании устойчивости опухоли легкого к назначаемым химиопрепаратам принадлежит генам монорезистентности, которые определяют резистентность/чувствительность опухолевых клеток к отдельным химиопрепаратам. В представленном обзоре рассмотрены механизмы транспорта, активации и мишени химиопрепаратов, а также определяются основные маркеры для прогнозирования их эффективности, и возможность применения их в клинической практике. Для РЛ охарактеризованы такие гены монорезистентности, как АВСС5, RRM1, ERCC1, TOP1, TOP2a, TUBB3 и TYMS. Приведены клинические исследования, доказывающие эффективность их использования в качестве предиктивных маркеров для назначения отдельных химиопрепаратов. Приводится проспективное исследование авторов статьи с персонализированным назначением адъювантной химиотерапии больным РЛ.
Ключевые слова: 
рак легкого, химиотерапия, гены монорезистентности, химиочувствительность
Для цитирования: 
Цыганов М.М., Дерюшева И.В., Родионов Е.О., Ибрагимова М.К., Миллер С.В., Литвяков Н.В. ГЕНЫ МОНОРЕЗИСТЕНТНОСТИ КАК МАРКЕР ДЛЯ ПЕРСОНАЛИЗАЦИИ ХИМИОТЕРАПИИ РАКА ЛЕГКОГО. Молекулярная медицина, 2018; (1): -https://doi.org/10.29296/24999490-2018-01-01

Список литературы: 
  1. Scagliotti G.V., Pastorino U., Vansteenkiste J.F., Spaggiari L., Facciolo F., Orlowski T.M., Maiorino L., Hetzel M., Leschinger M., and Visseren-Grul C. Randomized phase III study of surgery alone or surgery plus preoperative cisplatin and gemcitabine in stages IB to IIIA non–small-cell lung cancer. Journal of Clinical Oncology. 2012; 30(2): 172-178.
  2. Vansteenkiste J., De Ruysscher D., Eberhardt W., Lim E., Senan S., Felip E., and Peters S. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2013; 241.
  3. Depierre A., Westeel V., and Jacoulet P. Preoperative chemotherapy for non-small cell lung cancer. Cancer treatment reviews. 2001; 27(2): 119-127.
  4. Felip E., Massuti B., Alonso G., González-Larriba J., Camps C., Isla D., Costas E., Sánchez J., Griesinger F., and Rosell R., Surgery (S) alone, preoperative (preop) paclitaxel/carboplatin (PC) chemotherapy followed by S, or S followed by adjuvant (adj) PC chemotherapy in early-stage non-small cell lung cancer (NSCLC): Results of the NATCH multicenter, randomized phase III trial. J Clin Oncol. 2009; 27: 7500.
  5. Lan J., Huang H.-Y., Lee S.-W., Chen T.-J., Tai H.-C., Hsu H.-P., Chang K.-Y., and Li C.-F. TOP2A overexpression as a poor prognostic factor in patients with nasopharyngeal carcinoma. Tumor Biology. 2014; 35(1): 179-187.
  6. Wei C.H., Gorgan T.R., Elashoff D.A., Hines O.J., Farrell J.J., and Donahue T.R. A meta-analysis of gemcitabine biomarkers in patients with pancreatico-biliary cancers. Pancreas; 2013: 42(8).
  7. Shatokhina S.N., Zakharova N.M., Dedova M.G., Sambulov V.I., and Shabalin V.N., Morphological marker of tumor progression in laryngeal cancer. Voprosy onkologii. 2013; 59(2): 66-70.
  8. Fung K.L., Tepede A.K., Pluchino K.M., Pouliot L.M., Pixley J.N., Hall M.D., and Gottesman M.M. Uptake of Compounds That Selectively Kill Multidrug-Resistant Cells: The Copper Transporter SLC31A1 (CTR1) Increases Cellular Accumulation of the Thiosemicarbazone NSC73306. Molecular pharmaceutics. 2014; 11(8): 2692-2702.
  9. Li J., Li Z.N., Du Y.J., Li X.Q., Bao Q.L., and Chen P. Expression of MRP1, BCRP, LRP, and ERCC1 in advanced non-small-cell lung cancer: correlation with response to chemotherapy and survival. Clin Lung Cancer. 2009; 10(6): 414-21.
  10. Kalikaki A., Voutsina A., Koutsopoulos A., Papadaki C., Sfakianaki M., Yachnakis E., Xyrafas A., Kotsakis A., Agelaki S., and Souglakos J. ERCC1 SNPs as Potential Predictive Biomarkers in Non-Small Cell Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Cancer investigation. 2015.
  11. De Dosso S., Zanellato E., Nucifora M., Boldorini R., Sonzogni A., Biffi R., Fazio N., Bucci E., Beretta O., and Crippa S. ERCC1 predicts outcome in patients with gastric cancer treated with adjuvant cisplatin-based chemotherapy. Cancer chemotherapy and pharmacology. 2013; 72(1): 159-165.
  12. Park K.W., Jung E.-S., Kim D.-G., Yoo Y.-K., Hong T.-H., Lee I.S., Koh Y.H., Kim J.-H., and Lee M.A. ERCC1 Can Be a Prognostic Factor in Hilar Cholangiocarcinoma and Extrahepatic Bile Duct Cancer, But Not in Intrahepatic Cholangiocarcinoma. Cancer Research and Treatment. 2013; 45(1): 63-69.
  13. Yuanming L., Lineng Z., Baorong S., Junjie P., and Sanjun C. BRCA1 and ERCC1 mRNA levels are associated with lymph node metastasis in Chinese patients with colorectal cancer. BMC Cancer, 2013; 13(1): 103.
  14. Yan D., Wei P., An G., and Chen W. Prognostic potential of ERCC1 protein expression and clinicopathologic factors in stage III/N2 non-small cell lung cancer. J Cardiothorac Surg. 2013; 8: 149.
  15. Tiseo M., Bordi P., Bortesi B., Boni L., Boni C., Baldini E., Grossi F., Recchia F., Zanelli F., and Fontanini G., ERCC1/BRCA1 expression and gene polymorphisms as prognostic and predictive factors in advanced NSCLC treated with or without cisplatin. British journal of cancer. 2013; 108(8): 1695-1703.
  16. Han Y., Wang X.-B., Xiao N., and Liu Z.-D., mRNA expression and clinical significance of ERCC1, BRCA1, RRM1, TYMS and TUBB3 in postoperative patients with non-small cell lung cancer. Asian Pac J Cancer Prev. 2013; 14(5): 2987-2990.
  17. Bepler G., Williams C., Schell M.J., Chen W., Zheng Z., Simon G., Gadgeel S., Zhao X., Schreiber F., and Brahmer J. Randomized International Phase III Trial of ERCC1 and RRM1 Expression–Based Chemotherapy Versus Gemcitabine/Carboplatin in Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2013; p. JCO. 2012.46. 9783.
  18. Olaussen K.A., Dunant A., Fouret P., Brambilla E., André F., Haddad V., Taranchon E., Filipits M., Pirker R., and Popper H.H. DNA repair by ERCC1 in non–small-cell lung cancer and cisplatin-based adjuvant chemotherapy. New England Journal of Medicine. 2006; 355(10): 983-991.
  19. Kaira K., Takahashi T., Murakami H., Shukuya T., Kenmotsu H., Ono A., Naito T., Tsuya A., Nakamura Y., and Endo M. The role of βIII-tubulin in non-small cell lung cancer patients treated by taxane-based chemotherapy. International journal of clinical oncology. 2013; 18(3): 371-379.
  20. Leng X.-F., Chen M.-W., Xian L., Dai L., Ma G.-Y., and Li M.-H. Combined analysis of mRNA expression of ERCC1, BAG-1, BRCA1, RRM1 and TUBB3 to predict prognosis in patients with non-small cell lung cancer who received adjuvant chemotherapy. J Exp Clin Cancer Res. 2012; 31(1): 25.
  21. Reiman T., Lai R., Veillard A., Paris E., Soria J., Rosell R., Taron M., Graziano S., Kratzke R., and Seymour L. Cross-validation study of class III beta-tubulin as a predictive marker for benefit from adjuvant chemotherapy in resected non-small-cell lung cancer: analysis of four randomized trials. Annals of Oncology. 2011: 33.
  22. Levallet G., Bergot E., Antoine M., Creveuil C., Santos A.O., Beau-Faller M., De Fraipont F., Brambilla E., Levallet J., and Morin F. High TUBB3 Expression, an Independent Prognostic Marker in Patients with Early Non–Small Cell Lung Cancer Treated by Preoperative Chemotherapy, Is Regulated by K-Ras Signaling Pathway. Molecular Cancer Therapeutics. 2012; 11(5): 1203-1213.
  23. Jakobsen J.N., Santoni-Rugiu E., and Sørensen J.B. Use of TUBB3 for patient stratification and prognosis in lung cancer. Lung Cancer. 2015; 4(2): 97-110.
  24. Ritzel M.W., Ng A.M., Yao S.Y., Graham K., Loewen S.K., Smith K.M., Ritzel R.G., Mowles D.A., Carpenter P., and Chen X.-Z. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). Journal of Biological Chemistry. 2001; 276(4): 2914-2927.
  25. Oguri T., Achiwa H., Sato S., Bessho Y., Takano Y., Miyazaki M., Muramatsu H., Maeda H., Niimi T., and Ueda R.. The determinants of sensitivity and acquired resistance to gemcitabine differ in non–small cell lung cancer: a role of ABCC5 in gemcitabine sensitivity. Molecular Cancer Therapeutics. 2006; 5(7): 1800-1806.
  26. Heinemann V., Xu Y.-Z., Chubb S., Sen A., Hertel L.W., Grindey G.B., and Plunkett W. Cellular elimination of 2′, 2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer research. 1992; 52(3): 533-539.
  27. Plunkett W., Huang P., Xu Y.-Z., Heinemann V., Grunewald R., and Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. in Seminars in oncology. 1995.
  28. Liu Z.-Q., Han Y.-C., Zhang X., Chu L., Fang J.-M., Zhao H.-X., Chen Y.-J., and Xu Q. Prognostic Value of Human Equilibrative NucleosideTransporter1 in Pancreatic Cancer Receiving Gemcitabin-Based Chemotherapy: A Meta-Analysis. PLoS One. 2014; 9(1): 87-103.
  29. Farrell J.J., Elsaleh H., Garcia M., Lai R., Ammar A., Regine W.F., Abrams R., Benson A.B., Macdonald J., and Cass C.E. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology. 2009; 136(1): 187-195.
  30. Ward J.L., Sherali A., Mo Z.-P., and Tse C.-M. Kinetic and Pharmacological Properties of Cloned Human Equilibrative Nucleoside Transporters, ENT1 and ENT2, Stably Expressed in Nucleoside Transporter-deficient PK15 Cells ENT2 Exhibits a low affinity for guanosine and cytidine but a high affinity for inosine. Journal of Biological Chemistry. 2000; 275(12): 8375-8381.
  31. Hagmann W., Jesnowski R., Faissner R., Guo C., and Löhr J.M. ATP-binding cassette C transporters in human pancreatic carcinoma cell lines: upregulation in 5-fluorouracil-resistant cells. Pancreatology. 2009; 9(1): 136-144.
  32. Longley D.B., Harkin D.P., and Johnston P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer. 2003; 3(5): 330-338.
  33. Yu Y., Ding S., Liang Y., Zheng Y., Li W., Yang L., Zheng X., and Jiang J. Expression of ERCC1, TYMS, TUBB3, RRM1 and TOP2A in patients with esophageal squamous cell carcinoma: A hierarchical clustering analysis. Experimental and therapeutic medicine. 2014; 7(6): 1578-1582.
  34. Aoki Y., Sakogawa K., Hihara J., Emi M., Hamai Y., Kono K., Shi L., Sun J., Kitao H., and Ikura T. Involvement of ribonucleotide reductase-M1 in 5-fluorouracil‑induced DNA damage in esophageal cancer cell lines. International journal of oncology. 2013; 42(6): 1951-1960.
  35. Trahtenberg A.H. and Kolbanov K.I. Lung cancer. Atmosphere. Pulmonology and Allergology. 2008; 4: 3-9.
  36. Chissov V.I. and Dar'jalova S.L. Oncology (clinical guidelines).М.: Gjeotar-Media; 2006, 638.
  37. Kim B., Fatayer H., Hanby A.M., Horgan K., Perry S.L., Valleley E.M., Verghese E.T., Williams B.J., Thorne J.L., and Hughes T.A. Neoadjuvant chemotherapy induces expression levels of breast cancer resistance protein that predict disease-free survival in breast cancer. PLoS One. 2013; 8(5): 627-66.
  38. Iusuf D., Teunissen S.F., Wagenaar E., Rosing H., Beijnen J.H., and Schinkel A.H. P-glycoprotein (ABCB1) transports the primary active tamoxifen metabolites endoxifen and 4-hydroxytamoxifen and restricts their brain penetration. Journal of Pharmacology and Experimental Therapeutics. 2011; 337(3): 710-717.
  39. Ieiri I., Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug metabolism and pharmacokinetics, 2012. 27(1): p. 85-105.
  40. Buenoв R., Farber D., D’ami T.A., Demmyâ M., Steven J., Feigenbergã M., Frederic W., and Krisá G., Non-small cell lung cancer. Recommendations for the diagnosis and treatment of lung cancer. 2006; 2: 42-70.
  41. Litman T., Druley T., Stein W., and Bates S. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cellular and Molecular Life Sciences CMLS. 2001; 58(7): 931-959.
  42. Leith C.P., Kopecky K.J., Chen I.-M., Eijdems L., Slovak M.L., Mcconnell T.S., Head D.R., Weick J., Grever M.R., and Appelbaum F.R. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia. A Southwest Oncology Group Study. Blood. 1999; 94(3): 1086-1099.
  43. Amiri-Kordestani L., Basseville A., Kurdziel K., Fojo A.T., and Bates S.E. Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resistance Updates. 2012; 15(1): 50-61.
  44. Tang S.C., Lankheet N.A., Poller B., Wagenaar E., Beijnen J.H., and Schinkel A.H. P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict brain accumulation of the active sunitinib metabolite N-desethyl sunitinib. Journal of Pharmacology and Experimental Therapeutics. 2012; 341(1): 164-173.
  45. Tsurutani J., Nitta T., Hirashima T., Komiya T., Uejima H., Tada H., Syunichi N., Tohda A., Fukuoka M., and Nakagawa K. Point mutations in the topoisomerase I gene in patients with non-small cell lung cancer treated with irinotecan. Lung Cancer. 2002; 35(3): 299-304.
  46. Kanzawa F., Sugimoto Y., Minato K., Kasahara K., Bungo M., Nakagawa K., Fujiwara Y., Liu L.F., and Saijo N. Establishment of a camptothecin analogue (CPT-11)-resistant cell line of human non-small cell lung cancer: characterization and mechanism of resistance. Cancer research. 1990; 50(18): 5919-5924.
  47. Nygård S.B., Christensen I.J., Nielsen S.L., Nielsen H.J., Brünner N., and Spindler K.-L.G. Assessment of the topoisomerase I gene copy number as a predictive biomarker of objective response to irinotecan in metastatic colorectal cancer. Scandinavian journal of gastroenterology. 2013; 49(1): 84-91.
  48. Kümler I., Balslev E., Stenvang J., Brünner N., and Nielsen D. A phase II study of weekly irinotecan in patients with locally advanced or metastatic HER2-negative breast cancer and increased copy numbers of the topoisomerase 1 (TOP1) gene: a study protocol. BMC Cancer. 2015; 15(1): 78.
  49. Grunnet M., Calatayud D., Schultz N.A., Hasselby J.P., Mau-Sørensen M., Brünner N., and Stenvang J. TOP1 gene copy numbers are increased in cancers of the bile duct and pancreas. Scandinavian journal of gastroenterology. 2015; (0): 1-10.
  50. Vulsteke C., Lambrechts D., Dieudonné A., Hatse S., Brouwers B., Van Brussel T., Neven P., Belmans A., Schöffski P., and Paridaens R. Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-) adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC). Annals of Oncology. 2013; 24(6): 1513-1525.
  51. Lacave R., Coulet F., Ricci S., Touboul E., Flahault A., Rateau J., Cesari D., Lefranc J., and Bernaudin J. Comparative evaluation by semiquantitative reverse transcriptase polymerase chain reaction of MDR1, MRP and GSTp gene expression in breast carcinomas. British journal of cancer. 1998; 77(5): 694.
  52. Korman D.B. Fundamentals of anticancer chemotherapy. М.: Practical medicine; 2006; 512.
  53. Leivonen S.-K., Rokka A., Östling P., Kohonen P., Corthals G.L., Kallioniemi O., and Perälä M. Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Molecular & Cellular Proteomics. 2011; 10(7): 110.
  54. Litviakov N.V., Garbukov E.Yu., Slonimskaya E.M., Tsyganov M.M., Denisov E.V., Vtorushin S.V., Christenko K.Yu., Zavyalova M.V., Cherdyntseva N.V. Correlation of metastasis-free survival in breast cancer patients and an expression vector of multidrug resistance genes in tumor during neoadjuvant chemotherapy. Voprosy onkologii. 2013; 3(59): 334-340.
  55. Litviakov N.V. Gradient phenomenon of multidrug resistance gene expression in breast cancer during. Siberian journal of oncology. 2013; 4(58):5-11.
  56. Abuhammad S. and Zihlif M. Gene expression alterations in doxorubicin resistant MCF7 breast cancer cell line. Genomics. 2013; 101(4): 213-220.
  57. Durbecq V., Paesmans M., Cardoso F., Desmedt C., Di Leo A., Chan S., Friedrichs K., Pinter T., Van Belle S., and Murray E. Topoisomerase-IIα expression as a predictive marker in a population of advanced breast cancer patients randomly treated either with single-agent doxorubicin or single-agent docetaxel. Molecular Cancer Therapeutics. 2004; 3(10): 1207-1214.
  58. Orlando L., Del Curto B., Gandini S., Ghisini R., Pietri E., Torrisi R., Balduzzi A., Cardillo A., Dellapasqua S., and Veronesi P. Topoisomerase IIα gene status and prediction of pathological complete remission after anthracycline-based neoadjuvant chemotherapy in endocrine non-responsive Her2/neu-positive breast cancer. The Breast. 2008; 17(5): 506-511.
  59. Miyoshi Y., Kurosumi M., Kurebayashi J., Matsuura N., Takahashi M., Tokunaga E., Egawa C., Masuda N., Kono S., and Morimoto K. Predictive factors for anthracycline-based chemotherapy for human breast cancer. Breast Cancer. 2010; 17(2): 103-109.
  60. Kawachi K., Sasaki T., Murakami A., Ishikawa T., Kito A., Ota I., Shimizu D., Nozawa A., Nagashima Y., and Machinami R. The topoisomerase II alpha gene status in primary breast cancer is a predictive marker of the response to anthracycline-based neoadjuvant chemotherapy. Pathology-Research and Practice. 2010; 206(3): 156-162.