МЕЛАТОНИН И ЦИРКАДНЫЕ РИТМЫ В СИСТЕМЕ МАТЬ–ПЛАЦЕНТА–ПЛОД

DOI: https://doi.org/10.29296/24999490-2018-06-02

И.И. Евсюкова, доктор медицинских наук, профессор, И.М. Кветной, доктор медицинских наук, профессор ФГБУ «НИИ акушерства, гинекологии и репродуктологии им. Д.О. Отта», Российская Федерация, 199034, Санкт-Петербург, Менделеевская линия, д. 3 Е-mail: [email protected]

В обзоре представлены данные литературы о структуре циркадной осцилляторной системы организма и роли мелатонина в синхронизации эндогенных ритмов относительно суточных ритмов окружающей среды, что обеспечивает нормальное течение беременности и реализацию генетической программы развития плаценты и плода. Показано, что плацентарный мелатонин благодаря паракринным, аутокринным и интракринным механизмам обеспечивает морфологическое развитие и стабильность плацентарной функции, чему способствует и циркадная экспрессия clock-генов плаценты, согласованная с ритмом изменений материнского мелатонина. Приведены результаты экспериментальных и клинических исследований, которые показывают, что во время внутриутробной жизни ритмическая экспрессия clock-генов супрахиазматических ядер гипоталамуса (СХЯ) и органов плода запускается и зависит от состояния циркадной организации жизнедеятельности материнского организма и основного мессенджера биоритмов, генерируемых СХЯ, – мелатонина. Это определяет тесное единство системы мать–плацента–плод и обеспечивает постнатальную интеграцию эндогенных биоритмов функциональных систем ребенка в циркадную систему, подобную таковой у взрослых, регулируемую собственными СХЯ в зависимости от циркадных изменений освещенности окружающей среды. Нарушение циркадной продукции мелатонина у беременной отражается на становлении ритмической активности специфических генов плода и определяет программирование отдаленной патологии у потомства.
Ключевые слова: 
беременность, плацента, плод, новорожденный
Для цитирования: 
Евсюкова И.И., Кветной И.М. МЕЛАТОНИН И ЦИРКАДНЫЕ РИТМЫ В СИСТЕМЕ МАТЬ–ПЛАЦЕНТА–ПЛОД. Молекулярная медицина, 2018; (6): -https://doi.org/10.29296/24999490-2018-06-02

Список литературы: 
  1. Мелатонин: теория и практика. Под ред. Рапопорта С.И., Голиченкова В.А. М.: Медпрактика-М, 2009; 100. [Melatonin: teorija i praktika. Ed. By S.I. Rapoport, V.A.Golichenkov. M.: Medpraktika-M, 2009; 100 (in Russian)]
  2. Macchi M.M., Bruce J.N. Human pineal physiology and functional significance of Melatonin. Frontiers in Neuroendocrinology. 2004; 25 (3–4): 177–95. https://doi.org/10.1016/j.vfrne.2004.o8.001.
  3. Pandi-Perumal S.R., Srinivasan V., Maestroni G.J.M., Cardjnali D.P., Poegeller B., Hardeland R. Melatonin. Nature’s most versatile biological signal? FEBS J. 2006; 273 (13): 2813–38. https://doi.org/10.1111/j.1742-4658.2006.o\05322x
  4. Мелатонин в норме и патологии. Под ред. Ф.И. Комарова, С.И. Рапопорта, Н.К. Малиновской, В.Н. Анисимова. М.: Медпрактика-М, 2004; 308. [Ed. By Komarov F.I., Rapoport S.I., Malinovskaja N.K., Anisimov V.N. red. Melatonin v norme i patologii. M.: Medpraktika-M, 2004; 308 (in Russian)]
  5. Boden M.J., Varcoe T.J., Kennaway D.J. Circadian regulation of reproduction: From gamete to offspring. Prog. Biophys. Mol. Biol. 2013; 113 (3): 387–97. https://doi.org/10.1016/j.pbiomolbio.2013.01.003
  6. Mauriz J.L., Collado P.S., Veneroso C., Reiter R.J., Gonzalez-Gallego J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: resent insights and new perspectives. J. Pineal Res. 2013; 54 (1): 1–14. https://doi.org/10.1111/j.1600-079X.2012.01014.x.
  7. Arendt J., Skene D.J. Melatonin as chronobiotic. Sleep Med. Rev. 2005; 9 (1): 25–39. https://doi.org/10.1016/j.smrv.2004.05.002.
  8. Bedrosian T.A., Herring K.L., Walton G.C., Fonken L.K., Weil Z.M., Nelson R.J. Evidence for feedback control of pineal melatonin secretion. Neurosci Lett. 2013; 542 (10): 123–5. https://doi.org/10.1016/j.neulet.2013.03.021.
  9. Menaker M., Murphy Z.C., Sellix M.T. Central control of peripheral oscilators. Curr. Opin. Neurobiol. 2013; 23 (5): 741–6. https://doi.org/10.1016/j.conb.2013.03.003
  10. Mazzoccoli G. The timing clock work of life. J. Biol. Regul. Homeost. Agents. 2011; 25: 137–43. PMID: 21382283.
  11. Lucas R.J. Mammalian inner retinal photoreception. Curr. Biol. 2013; 23: 125–33. https://doi.org/10.1016/j.cub.2012.12.029
  12. Dibner C., Schibler U., Albrecht U. The mammalian circadian timing system. Ann. Rev. Physiol. 2010; 72: 517–49. https://doi.org/10.1146/annurev-physiol-021909-135821.
  13. Reiter R.J., Rosales-Corral S., Coto-Montes A., Boga J.A., Tan D-X., Davis J.M., Konturek S.J., Brzozowski T. The photoperiod, circadian regulation and chronodisruption: the requisite inter play between the suprachiasmatic nuclei and the pineal and gut melatonin. J. Physiol. Pharmacol. 2011; 62 (3): 269–74. PMID: 21893686.
  14. Welsh D.K., Takahashi J.S., Kay S.A. Suprachiasmatic nucleus: cell autonomy and network properties. Ann. Rev Physiol. 2010; 72: 551–7. PMID: 21893686.
  15. Кветной И.М., Райхлин Н.Т., Южаков В.В., Ингель И.Э. Экстрапинеальный мелатонин: место и роль в нейроэндокринной регуляции гомеостаза. Бюл. экспер. биол. 1999; 127 (4): 364–70. [Kvetnoj I.M., Rajhlin N.T., Juzhakov V.V., Ingel’ I.Je. Jekstrapineal’nyj melatonin: mesto i rol’ v nejrojendokrinnoj reguljacii gomeostaza. Bjulleten’ jeksperimental’noj biologii. 1999; 127 (4): 364–70 (in Russian)]
  16. Tan D.X., Manchester L.C., Liu X., Rosales-Corral S.A., Acuna-Castroviejo D., Reiter R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 2013; 54 (2): 127–38. https://doi.org/10.1111/jpi.12026.
  17. Reiter R.J., Rosales-Corral S.A., Manchester L.C., Tan D-X. Peripheral Reproductive Organ Health and Melatonin: Ready for Prime Time. Int. J. Mol. Sci. 2013; 14 (4): 7231–72. https://doi.org/10.3390/ijms14047231.
  18. Venegas C., Garcia J.A., Escames G., Ortiz F., Lorez A., Doerrier C., Garcia-Corzo L., Lorez L.C., Reiter R.J., Acuna-Castoroviejo D. Extrapineal melatonin analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 2012; 52 (2): 217–27. https://doi.org/10.1111/j.1600-079X.2011.00931.x.
  19. Cardinali D.P., Lynch H.J., Wurtman R.J. Binding of melatonin to human and rat plasma proteins. Endocrinology. 1972; 91 (5): 1213–8. PMID: 4538504.
  20. Ma X., Idle J.R., Krausz K.W., Gonzalez F.JJ. Metabolism of melatonin by human cytochromes p450. Drug Metab. Dispos. 2005; 33 (4): 489–94. https://doi.org/10.1124/dmd.104.002410.
  21. Dubocovich M.L. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep. Med. 2007; 8 (3): 34–42. PMID: 18032103.
  22. Reppert S.M., Weaver D.R., Ebisawa T., Mahle C.D., Kolakowski. Cloning of a melatonin-related receptor from human pituitary. FEBS Lett. 1996; 386 (2–3): 219–24. PMID: 8647286.
  23. Reiter R.J, Tamura H., Tan D.H., Xu H-Y. Melatonin and the circadian system: contributions to successful female reproduction. Fertil. Steril. 2014; 102 (2): 321–8. https://doi.org/10.1016/j.fertnstert.2014.06.014.
  24. Reppert S.M., Godson C., Mahle C.D., Weaver D.R., Slaugenhaupt S., Gusella J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc. Natl. Acad. Sci. USA. 1995; 92 (19): 8734–8. PMID: 7568007.
  25. Bedrosian T.A., Herring K.L., Walton G.C., Fonken L.K., Weil Z.M., Nelson R.J. Evidence for feedback control of pineal melatonin secretion. Neurosci Lett. 2013; 542 (10): 123–5. https://doi.org/10.1016/j.neulet.2013.03.021.
  26. Fjaerli O., Lund T., Osterud B. The effect of melatonin on cellular activation processes in human blood. J. Pineal Res. 1999; 26 (1): 50–5. PMID: 10102760.
  27. Erren T.S., Reiter R.J. Melatonin: a universal time messenger. Neuro Endocrinol. Lett. 2015; 36 (3): 187–92. PMID: 20313381.
  28. Valenzuela F.J., Vera J., Venegas C., Pino F., Lagunas C. Circadian System and Melatonin Hormone: Risk Factors for Complications during Pregnancy. Obstet. Gynecol. Int. 2015; 2015: 825802. https://doi.org/10.1155/2015/825802.
  29. Kivela A. Serum melatonin during human pregnancy. Acta Endocrinol (Copengagen). 1991; 124 (3): 233–7. PMID: 2011913.
  30. Nakamura N.Y., Tamura H., Kashida S., Takayama H., Yagamata Y., Karube A., Sugino N., Kato H. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J. Pineal Res. 2001; 30 (1): 29–33. PMID 11168904.
  31. Soliman A., Lacasse A.A., Lanoix D., Sagrillo-Fagundes L., Boulard V., Vaillancourt C. Placental melatonin system is present throughtout and regulates villous trophoblast differentiation. J. Pineal Res. 2015; 59 (1): 38–46. https://doi.org/10. 1111/jpi.12236.
  32. Iwasaki S., Nakazawa K., Sacai J., Kometani K., Iwashita M., Yoshimura Y., Maruyama I. Melatonin as local regulator of human placental function. J. Pineal Res. 2005; 39: 261–5. https://doi.org/10.1111/j.1600-079X.2005.00244.x.
  33. Reiter R.J., Tan D.X., Korkmaz A., Rosales-Corral S.A. Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update. 2014; 20 (2): 293–307. https://doi.org/10.1093/humupd/dmt054.
  34. Sagrilo-Fagundes L., Soliman A., Vaillancourt C. Maternal and placental melatonin: actions and implication for successful pregnancies. Minerva Gynecol. 2014; 66 (3): 251–66. PMID: 24971781.
  35. Кветной И.М., Айламазян Э.К., Лапина Е.А., Колобов А.В. Сигнальные молекулы-маркеры зрелости плаценты. М.: МЕДпресс-информ, 2005; 96. [Kvetnoj I.M., Ajlamazjan Je.K., Lapina E.A., Kolobov A.V. Signal’nye molekuly – markery zrelosti placenty. M.: MEDpress-inform, 2005; 96 (in Russian)]
  36. Frigato E., Lunghi L., Ferretti M.E., Biondi C., Bertolucci C. Evidence for circadian rhythms in human trophoblast cell line that persist in hypoxia. Biochem. Biophys. Res. Communications. 2009; 378 (1): 108–11. https://doi.org/10.1016/j.bbrc.2008.11.006.
  37. Wharfe M.D., Mark P.J., Waddell B.J. Circadian variation in placental and hepatic clock genes in rat pregnancy. Endocrinology. 2011; 152 (9): 3552–60. https://doi.org/10.1210/en.2011-0081.
  38. Waddell B.J., Wharfe M.D., Crew R.C., Mark P.J. A rhythmic placenta? Circadian variation Clock genes and placental function. Placenta. 2012; 33 (7): 533–9. https://doi.org/10.1016/j.placenta.2012.03.008.
  39. Mark P., Wharfe M.D., Lewis J.L., Waddell B.J. Circadian variation in components of the placental glucocorticoid barrier contribute the rhythmic placental and fetal glucocorticoid exposure in the rat. Placenta. 2011; 32: 137. https://doi.org/10.1015/j.placenta.2010.12.007.
  40. Waddell B.J., Wharfe M.D., Lewis J.L., Mark P.J. Circadian variation expression in nutrient transporter in rat placenta. J. Develop. Origins Health. Disease. 2011; 2 (1): 16. https://doi.org/10.1210/en.2011.0081.
  41. Olcese J., Lоzier S., Paradise C. Melatonin and the circadian timing of human parturition. Reprod. Sci. 2013; 20 (2): 168–74. https://doi.org/10.1177/1933719112442244.
  42. Kennaway D.J., Goble F.C., Stamp G.E. Factors influencing the development of melatonin rhythmicity in humans. J. Clin. Endocrinol. Metab. 1996; 81 (4): 1525–32. PMID: 8636362.
  43. Tamura H., Nakamura Y., Terron M.P., Flores L.J., Manchester L.C., Tan D-X., Sugino N., Reiter R.J. Melatonin and pregnancy in the human. Reprod. Toxicol. 2008; 25 (3): 291–303. https://doi.org/10.16/j.reprotox.2008.03.005.
  44. Kennaway D.J. Melatonin and development physiology and pharmacology. Sem. Perinatol. 2000; 24: 258–66. PMID 10975432.
  45. Torres-Farfan C., Valenzuela F.J., Germain A.M., Viale M.N., Campino C., Torrealba F., Valenzuela G.J., Richter H.G., Seron-Ferre M. Maternal melatonin stimulates growth and prevents maturations of the capuchin monkey fetal adrenal gland. J. Pineal Res. 2006; 41 (1): 58–66. https://doi.org/10.1111/j.1600-079X.2006.00331x.
  46. Torres-Farfan C., Rocco V., Monso C., Valenzuela F.J. et al. Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology. 2006; 147 (10): 4618–26. PMID: 16840546.
  47. Kovacikova Z., Sladek M., Bendova Z., MIllnerova H., Simova A. Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development. Biol. Rhythms. 2006; 21 (2): 140–8. PMID: 16603678.
  48. Gozeri E., Celik H., Ozercan I., Gurates B,. Poltat S.A., Hanay F. The effect of circadian rhythm changes on fetal and placental development. Neuroendocrinology Letter. 2008; 29 (1): 87–90. PMID: 18283242.
  49. Seron-Ferre M., Torres-Farfan C., Forcelledo M.L., Valenzuela G.J. The development of circadian rhythms in the fetus and neonate. Semin. Perinatol. 2001; 25 (6): 363–70. PMID: 11778907.
  50. Seron-Ferre M., Valenzuela G.J, Torres-Farfan C. Circadian clocks during embryonic and fetal development. Birth Defects Res. (Part C). 2007; 81 (3): 204–14. https://doi.org/10.1002/bdrc.20101
  51. Varcoe T.J., Boden M.J., Voultsios A., Salkeld M.D., Rattanatray L., Kennaway D.J. Characterisation of the Maternal Response to Chronic Phase Shifts during Gestation in the Rat: Implications for Fetal Metabolic Programming. PloS ONE 2013; 8 (1): e53800. https://doi.org/10.1371/journal.pone0053800
  52. Torres-Farfan C., Seron-Ferre M., Dinet V., Korf H.W. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin- deficient (C57BL) mice. I Pineal Res. 2006; 40 (1): 64–70. PMID: 16313500.
  53. Thomas L., Drew J.E., Abramovich D.R., Williams L.M. The role of melatonin in the human fetus (review). Int. J. Mol. Med. 1998; 1 (3): 539–43. PMID: 9852259.
  54. Mirmiran M., Maas Y.G., Ariagno R.L. Development of fetal and neonatal sleep and circadian rhythms. Sleep. Med. Rev. 2003; 7 (4): 321–34. PMID: 14505599.
  55. Mendez N., Abarzua-Catalan L., Vilches N., Galdames H.A. et al. Timed Maternal Melatonin Treatment Reverses Circadian Disruption of the Fetal Adrenal Clock Imposed by Exposure to Constant Light. PloS ONE. 2012; 7 (8): e42713. https://doi.org/10.1371/journal.pone0042713.
  56. Seron-Ferre M., Torres C., Parraguez V.H., Vergara M., Valladares L., Forcelledo M.L., Constandil L., Valenzuela G.J. et al. Perinatal neuroendocrine regulation. Development of the circadian time-kiping system. Mol. Cell. Endocrin. 2002; 86 (2): 169–73. PMID: 11900892.
  57. Kivela A., Kauppila A., Leppaluotoj, Vakkuri O. Melatonin in infants and mothers at delivery and in infants during the first week of life. Clin. Endocrinol. (Oxf). 1990; 32 (5): 593–8. PMID: 2364563.
  58. Vicente P., Garcia A., Alvarez E., Clemente S., Biazguez E. Presence of melatonin in the umbilical cord blood of full-term human newborn. J. Pineal. Res. 1989; 6 (2): 135–40. PMID: 2915323.
  59. Евсюкова И.И., Ковальчук-Ковалевская О.В., Маслянюк Н.А., Додхоев Д.С. Особенности циклической организации сна и продукции мелатонина у здоровых доношенных новорожденных детей с задержкой внутриутробного развития. Физиол. человека. 2013; 39 (6): 63–71. https://doi.org/10.7868/S0131164613060040. [Evsyukova I.I., Koval’chuk-Kovalevskaya O.V., Maslyanyuk N.A., Dodkhoev D.S. Features of cyclic sleep organization and melatonin production in full-term newborns with intrauterine growth retardation. Human Physiology. 2013; 39 (6): 617–24 (in Russian)] https://doi.org/10.7868/S0131164613060040.
  60. Munoz-Hoyos A., Jaldo-Alba F., Molina-Carballo A., Rodriguez-Cabezas T., Molina-Font J.A., Acuna-Castroviejo D. Absence of Plasma Melatonin Circadian Rhythm during the First 72 Hours of Life in Human Infants. J. Clin. Endocrinol. Metab. 1993; 77 (3): 699–703. PMID: 8370692.
  61. Ogasawara T., Agachi N., Nishijima M. Melatonin levels in maternal plasma before and during delivery, and in fetal and neonatal plasma. Nihon. Sanka Fujinka Gakkai Zasshi. 1991; 43 (3): 335–41. PMID: 2045702.
  62. McGraw K., Hoffmann R., Harker C., Herman J.H. The development of circadian rhythms in human infant. Sleep. 1999; 22 (3): 303–10. PMID: 10341380.
  63. Seron-Ferre M., Mendez M., Abarzua-Catalan L., Vilches N. Valenzuela F.J., Reynolds H.E., Llanos A.J., Rojas A., Valenzuela G.J., Torres-Farfan C. Circadian rhythms in the fetus. Mol. Cell. Endocrinology. 2012; 349 (1): 68–75. https://doi.org/10.1016/j.mce.2011.07.039.
  64. Mendez N., Halabi D., Spichiger C., Salazar E.R., Vergata K. et al Gestational Chronodisruption Impairs Circadian Physiology in Rat Male Offspring, Increasing the Risk of Chronic Disease. Endocrinology. 2016; 157 (12): 4654–68. https://doi.org/10. 1210/en 2016-1282.
  65. Simonneaux V. Naughty melatonin. How mothers tick off their fetus. Endocrinology. 2011; 152 (5): 1734–8. https://doi.org/10.1210/en.2011-0226.
  66. Tain Y-L., Huang L-T., Hsu C-N. Developmental Programming of Adult Disease: Reprogramming by Melatonin? Int. J. Mol. Sci. 2017; 18 (2): 381. https://doi.org/10.3390/ijms18020381.
  67. Ferreira D.S., Amaral F.G., Mesquita C.C., Barbosa A.P.L., Santos C.L., Turati A.O., Santos L.R., Sollon C.S., Gomes P.R., Faria J.A., Neto J.C., Bordin S., Anhe G.F. Maternal Melatonin Programs the Daily Patte. https://doi.org/10.1371/journal.pone.0038795rn of Energy Metabolism in Adult Offspring. PloS ONE. 2012; 7 (6): e38795. https://doi.org/10.1371/journal.pone.0038795.