ПРИНЦИПЫ И ПРОБЛЕМЫ СУИЦИДНОЙ ГЕННОЙ ПРОТИВООПУХОЛЕВОЙ ТЕРАПИИ

DOI: https://doi.org/10.29296/24999490-2018-06-03

Е.Р. Немцова, доктор биологических наук, О.А. Безбородова, доктор биологических наук, Р.И. Якубовская, доктор биологических наук, профессор, А.Д. Каприн, академик РАН, доктор медицинских наук, профессор Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Российская Федерация, 125284, 2-й Боткинский пр., д. 3 E-mail: [email protected]

Представлен обзор литературы по суицидной генной противоопухолевой терапии. Метод основан на трансфекции опухолевых клеток конструкцией с геном фермента, способного превратить субстрат – малотоксичное пролекарство в высокотоксичный противоопухолевый агент. В обзоре рассмотрены современные представления о генно-терапевтических системах для этого вида лечения, требования к генной конструкции – эффекторному гену, промотору, к субстрату – пролекарству, описаны наиболее перспективные системы доставки генетического материала в клетки – вирусные и невирусные, рассмотрены условия реализации «эффекта свидетеля» – механизма, способствующего увеличению эффективности противоопухолевого и антиметастатического действия систем. Приведены данные о клинических испытаниях наиболее изученных систем «тимидинкиназа вируса простого герпеса (ВПГ) – ганцикловир» и «цитозиндезаминаза – 5-фторцитозин». Представлены результаты собственных исследований in vitro и in vivo бицистронной конструкции, в которой эффекторные гены тимидинкиназы ВПГ и гранулоцитарно-макрофагального колониестимулирующего фактора включены в плазмиду под конституциональным цитомегаловирусным промотором, а в качестве системы доставки использован невирусный вектор – блоксополимер полиэтиленимина с полиэтиленгликолем, к которому присоединен ТАТ-пептид. Доказаны продукция фермента и цитокина в трансфицированных конструкцией опухолевых клетках, цитотоксическое и противоопухолевое действие системы «тимидинкиназа ВПГ – ганцикловир» на различных моделях in vitro и in vivo и безопасность ее применения.
Для цитирования: 
Немцова Е.Р., Безбородова О.А., Якубовская Р.И., Каприн А.Д. ПРИНЦИПЫ И ПРОБЛЕМЫ СУИЦИДНОЙ ГЕННОЙ ПРОТИВООПУХОЛЕВОЙ ТЕРАПИИ. Молекулярная медицина, 2018; (6): -https://doi.org/10.29296/24999490-2018-06-03

Список литературы: 
  1. DeVita V.T., Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68 (21): 8643–53.
  2. Ortiz R., Melguizo C., Prados J., Álvarez P.J., Caba O., Rodriguez-Serrano F., Hita F., Aránega A. New gene therapy strategies for cancer treatment: a review of recent patents. Recent Pat Anticancer Drug Discov. 2012; 7 (3): 297–312.
  3. Navarro S.A., Carrillo E., Griñán-Lisón C., Martin A., Perán M., Marchal J.A., Boulaiz H. Cancer suicide gene therapy: a patent review. Expert Opin Ther Pat. 2016; 26 (9): 1095–104.
  4. Wang Y., Canine B.F., Hatefi A. HSV-TK/GCV cancer suicide therapy by a designed recombinant multifunctional vector. Nanomedicine. 2011; 7 (2): 193–200.
  5. Johnson A.J., Ardiani A., Sanchez-Bonilla M., Black M.E. Comparative analysis of enzyme and pathway engineering strategies for 5FC-mediated suicide gene therapy applications. Cancer gene therapy. 2011; 18 (8): 533–42.
  6. Williams E.M., Little R.F., Mowday A.M., Rich M.H., Chan-Hyams J.V.E., Copp J.N., Smaill J.B., Patterson A.V., Ackerley D.F. Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochemical J. 2015; 471 (2): 131–53.
  7. Davies L.C., Friedlos F., Hedley D., Martin J., Ogilvie L.M., Scanlon I.J., Springer C.J. Novel fluorinated prodrugs for activation by carboxipeptidase G2 showing good in vivo antitumor activity in gene-directed enzyme prodrug therapy. J. Med. Chem. 2005; 48 (16): 5321–8.
  8. Rosenthal E., Chung T., Parker W., Allan P., Clemons L., Lowman D., Hong J., Hunt F.R., Richman J., Conry R.M., Mannion K., Carroll W.R., Nabell L., Sorcher E.J. Phase I dose-escalating trial of Escherichia coli purine nucleoside phosphorylase and fludarabine gene therapy for advanced solid tumors. Ann Onc. 2015; 26: 1481–7.
  9. Giraud B., Hebert G., Deroussent A., Veal G.J., Vassal G., Paci A. Oxazaphosphorines: new therapeutic strategies for an old class of drugs. Expert opinion on drug metabolism & toxicology. 2010; 6 (8): 919–38.
  10. Capello M., Lee M., Wang H., Babel I., Katz M.H., Fleming J.B., Maitra A., Woneg H., Tian W., Taguchi A., Hanash S.M. Carboxylesterase 2 as a determinant of response to irinotecan and neoadjuvant FOLFIRINOX therapy in pancreatic ductal adenocarcinoma. J. of national cancer institute. 2015; 107 (8): 132–41.
  11. Bonifert G., Folkes L., Gmeiner C., Dach G., Spadiut O. Recombinant horseradish peroxidase variants for targeted cancer treatment. Cancer medicine. 2016; 5 (6): 1194–203.
  12. Malekshah O.M., Chen X., Nomani A., Sarkar S., Hatefi A. Enzyme/Prodrug systems for cancer gene therapy. Curr Pharmacol Rep. 2016; 2 (6): 299–308.
  13. Karjoo Z., Chen X., Hatefi A. Progress and problems with the use of suicide genes for targeted cancer therapy. Advanced drug delivery reviews. 2016; 99 (Pt A): 113–28.
  14. Karjoo Z., Ganapathy V., Hatefi A. Gene-directed enzyme prodrug cancer therapy. In «Gene Therapy of Cancer. Translational Approaches from Preclinical Studies to Clinical Implementation». Third Edition. Ed. Edmund C Lattime & Stanton L Gerson. Elsevier. 2014; 6: 77–91.
  15. Portsmouth D., Hlavaty J., Renner M. Suicide genes for cancer therapy. Mol. Aspects Med. 2007; 28 (1): 4–41.
  16. Niculescu-Duvaz I., Springer C.J. Introduction to the background, principles, and state of the art in suicide gene therapy. Mol. Biotechnol. 2005; 30 (1): 71–88.
  17. Niculescu-Duvaz D., Niculescu-Duvaz I., Springler C.J. Design of prodrugs for suicide gene therapy. Methods Mol. Med. 2004; 90: 161–202.
  18. Mohit E., Rafati S. Biological delivery approaches for gene therapy: strategies to potentiate efficacy and enhance specificity. Mol. Immunol. 2013; 56 (4): 599–611.
  19. Thomas S.M., Grandis J.R. The current state of head and neck cancer gene therapy. Human Gene Therapy. 2009; 20: 1565–75.
  20. Kasala D., Yoon A-R., Hong J., Kim S.W., Yun Ch-Ok. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond). 2016; 11 (13): 1689–713.
  21. Sharma A., Tandon M., Bangari D.S., Mittal S.K. Adenoviral vector-based strategies for cancer therapy. Curr Drug Ther 2009; 4 (2): 117–38.
  22. Anders M., Hansen R., Ding R.X. et al. Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor. Proc Natl Acad Sci USA. 2003; 100 (4): 1943–8.
  23. Ginn S.L., Amaya A.K., Alexander I.E., Edelstein M., Abedi M.R. Gene therapy clinical trials worldwide to 2017 – an update. J. Gene Med. 2018; e3015. https://doi.org/10.1002/jgm.3015.
  24. Sinn P.L., Sauter S.L., Mccray PBJr. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors – design, biosafety, and production. Gene Ther. 2005; 12 (14): 1089–98.
  25. Wong H.H., Lemoine N.R., Wang Y. Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses. 2010; 2 (1): 78–106.
  26. Coughlan L., Alba R., Parker A.L., Bradshaw A.C., McNeish I.A., Nicklin S.A., Baker A.H. Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses. 2010; 2 (10): 2290–355.
  27. Kim J., Kim P.H., Kim S.W., Yun C.O. Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials, 2012; 33 (6): 1838–50.
  28. Narvekar A., Ramamoorth M. Non viral vectors in gene therapy – an overview. J. Clin. Diagn Res. 2015; 9 (1): 1–6.
  29. Ulasov A.V., Khramtsov Y.V., Trusov G.A., Rosenkranz A.A., Sverdlov E.D., Sobolev A.S. Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy. Mol. Ther. 2011; 19: 103–12.
  30. Lehto T. et al. Cell penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv. 2012; 9 (7): 823–36.
  31. Qiao J., Doubrovin M., Sauter B.V. et al. Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther. 2002; 9: 168–75.
  32. Miao J., Chen G.G., Chun S.Y. et al. Adenovirus-mediated tBid overexpression results in therapeutic effects on p53-resistant hepatocellular carcinoma. Int J. Cancer. 2006; 119: 1985–93.
  33. Dai L.C. Midkine translocated to nucleoli and involved in carcinogenesis. World J. Gastroenterol. 2009; 15: 412–6.
  34. Lu B., Makhija S.K., Nettelbeck D.M. et al. Evaluation of tumor-specific promoter activities in melanoma. Gene Ther. 2005; 12: 330–8.
  35. Majumdar A.S., Hughes D.E., Lichtsteiner S.P. et al. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther. 2001; 8: 568–78.
  36. Fukazawa T., Maeda Y., Sladek F.M., Owen-Schaub L.B. Development of a cancer-targeted tissue-specific promoter system. Cancer Res. 2004; 64: 363–9.
  37. Dachs G.U., Hunt M.A., Syddall S., Singleton D.C., Patterson A.V. Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules. 2009; 14: 4517–45.
  38. Kuriyama S., Tsujinoue H., Yoshiji H. Immune response to suicide gene therapy. Methods Mol. Med. 2004; 90: 353–69.
  39. Chen H., Beardsley G.P., Coen D.M. Mechanism of ganciclovir-induced chain termination revealed by resistant viral polymerase mutants with reduced exonuclease activity. PNAS USA. 2014; 111 (49): 17462–7.
  40. Li Y-F., Yuan Y-Y., Zhang Y-M., Zhao N., Zhang Q., Meng F-X., Gao R-P., Yu B-F., Zhang Y-H., Guo R., Wang H-L., Xie J., Xu J., Qin Q., Dong X-Sh. HSVtk/GCV system on hepatoma carcinoma cells: Construction of the plasmid pcDNA3.1 pAFP TK and targeted killing effect. Molecular medicine Reports. 2017; 16: 764–72.
  41. Preuss E., Muik A., Weber K., Otte J., von Laer D., Fehse B. Cancer suicide gene therapy with TK.007: superior killing efficiency and bystander effect. J. Mol. Med. 2011; 89 (11): 1113–24.
  42. Ardiani A., Sanchez-Bonilla M., Black M.E. Fusion enzymes containing HSV-1 thymidine kinase mutants and guanylate kinase enhance prodrug sensitivity in vitro and in vivo. Cancer Gene Ther. 2010; 17 (2): 80–96.
  43. Wu L., Zhou W-B., Shen F., Liu W., Wu H-W., Zhou S-J., Li S.W. Connexin32 mediated antitumor effects of suicide gene therapy against hepatocellular carcinoma: In vitro and in vivo anticancer activity. Mol. Med. reports. 2016; 13 (4): 3213–9.
  44. Xiong T., Li Y., Ni F., Zhang F. Monitoring of bystander effect of herpes simplex virus thymidine kinase/acyclovir system using fluorescence resonance energy transfer technique. J. Biomed Nanotech. 2012; 8 (1): 74–9.
  45. Park S.Y., Lee J., Kim I.S. Combination gene therapy using multidrug resistance (MDR1) gene shRNA and herpes simplex virus-thymidine kinase. Cancer Letters. 2008; 26 (2): 205–14.
  46. Trust R., Tomicic M., Klocking R., Voutilainen N., Wutzler P., Kaina B. Comparison of the genotoxic and apoptosis-inducing properties of ganciclovir and penciclovir in Chinese ovary cells transfected with the thymidine kinase gene of herpes simplex virus-1: implications for gene therapeutic approaches. Cancer Gene Ther. 2000; 7 (1): 107–17.
  47. Wang H.E., Yu H.M., Liu R.S., Lin M., Gelovani J.G., Hwang J.J., Wei H.J., Deng W.P. Molecular imaging with 123-FIAU, 18F-FET, and 18F-FDG for monitoring herpes simplex virus type I thymidine kinase and gancyclovir prodrug activation gene therapy of cancer. J. Nucl. Med. 2006; 47 (7): 1161–7.
  48. Immonen A., Vapalahti M., Tyynelä K., Hurskainen H., Sandmair A., Vanninen R., Langford G., Murray N., Ylä-Herttuala S. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol. Ther. 2004; 10: 967–72.
  49. Leveille S., Samuel S., Goulet M.L., Hiscott J. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer gene therapy. 2011; 18 (6): 435–43.
  50. Perez O.D., Logg C.R., Hiraoka K., Diago O., Burnett R., Inagaki A., Jolson D., Amundson K., Buckley T., Lohse D., Lin A., Burrascano C., Ibanez C., Kasahara N., Gruber H.E., Jolly D.J. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Molecular Therapy. 2012; 20 (9): 1689–98.
  51. Freytag S.O., Stricker H., Lu M., Elshaikh M., Aref I., Pradhan D., Levin K., Kim J.H., Peabody J., Siddiqui F., Barton K., Pegg J., Zhang Y., Cheng J., Oja-Tebbe N., Bourgeois R., Gupta N., Lane Z., Rodriguez R., DeWeese T., Movsas B. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int J. Radiat Oncol. Biol. Phys. 2014; 89 (2): 268–76.
  52. Alekseenko I.V., Snezhkov E.V., Chernov I.P., Pleshkan V.V., Potapov V.K., Sass A.V., Monastyrskaya G.S., Kopantzev E.P., Vinogradova T.V., Khramtsov Yu.V., Ulasov A.V., Rosenkranz A.A., Sobolev A.S., Bezborodova O.A., Plyutinskaya A.D., Nemtsova E.R., Yakubovskaya R.I., Sverdlov E.D. Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer. J. of Translational Medicine. 2015; 13 (1): 78–89.
  53. Кармакова Т.А., Безбородова О.А., Немцова Е.Р., Плютинская А.Д., Якубовская Р.И., Каприн А.Д., Алексеенко И.В., Монастырская Г.С., Соболев А.С., Свердлов Е.Д. Оценка противоопухолевой эффективности и механизма действия суицидной генной терапии на экспериментальной модели саркомы мыши. Биофармацевтический журнал. 2016; 8 (1): 42–53. [Karmakova T.A, Bezborodova O.A, Nemtsova E.R., Plyutinskaya A.D., Yakubovskaya R.I, Kaprin A.D, Alekseenko I.V, Monastyrskaya G.S, Sobolev A.S., Sverdlov E.D. Evaluation of suicide gene therapy antitumor efficacy and mechanism of action in the experimental model of murine sarcoma. Biopharmaceutical J. 2016; 8 (1): 42–53 (in Russian)]
  54. Безбородова О.А., Немцова Е.Р., Венедиктова Ю.Б., Алексеенко И.В., Соболев А.С., Монастырская Г.С., Якубовская Р.И., Каприн А.Д., Свердлов Е.Д. Экспериментальная генная суицидная противоопухолевая терапия: разработка эффективной схемы лечения на модели саркомы мыши. Биофармацевтический журнал. 2016; 8 (2): 40–6. [Bezborodova O.A, Nemtsova E.R, Venediktova J.B, Alekseenko I.V, Sobolev A.S, Monastyrskaya G.S, Yakubovskaya R.I, Kaprin A.D, Sverdlov E.D. Experimental gene suicide antitumor therapy: development of the efficient treatment scheme on the model of murine sarcoma. Biopharmaceutical J. 2016; 8 (2): 40–6 (in Russian)]