English
Русский
МЕТОДЫ МОДЕЛИРОВАНИЯ ГИПОТИРЕОЗА: КЛАССИФИКАЦИЯ, ПРИНЦИПЫ МОДЕЛИРОВАНИЯ
DOI: https://doi.org/10.29296/24999490-2021-04-04
Для разработки и доклинической оценки эффективности новых препаратов, а также изучения структурно-функциональных изменений в различных органах и тканях исследователями широко применяются методы моделирования экспериментальных патологических состояний. Гипотиреоз (гипофункция щитовидной железы – ЩЖ) входит в число широкораспространенных заболеваний, которое в той или иной степени затрагивает практически все структуры организма человека. В связи с многочисленностью разработанных к настоящему моменту времени методов моделирования гипотиреоза существует необходимость их систематизации. Цель литературного обзора заключается в систематизации принципов моделирования гипофункции ЩЖ. В этом обзоре представлена общая классификация, рассмотрены принципы выполнения, проанализированы преимущества и недостатки следующих методов моделирования гипотиреоза: диетических, хирургических, лекарственных, иммунологических, радиоизотопных и генетических. Данные методы позволяют создавать различные специфические условия для формирования гипофункции ЩЖ. Для достижения поставленной цели исследования нами проведен анализ литературных отечественных и зарубежных источников по базам данных РИНЦ/elibrary и PubMed/Medline соответственно, опубликованных преимущественно в течение последних 20 лет.
Ключевые слова:
мутации
Для цитирования:
Чаулин А.М., Григорьева Ю.В., Суворова Г.Н., Дупляков Д.В. МЕТОДЫ МОДЕЛИРОВАНИЯ ГИПОТИРЕОЗА: КЛАССИФИКАЦИЯ, ПРИНЦИПЫ МОДЕЛИРОВАНИЯ. Молекулярная медицина, 2021; (4): -https://doi.org/10.29296/24999490-2021-04-04
Список литературы:
- Chaker L., Bianco A.C., Jonklaas J., Peeters R.P. Hypothyroidism. Lancet. 2017; 390 (10101): 1550–62. https://doi.org/10.1016/s0140-6736(17)30703-1
- Alam M.A., Quamri M.A., Sofi G., Ansari S. Update of hypothyroidism and its management in Unani medicine. J. Basic Clin Physiol Pharmacol. 2020:/j/jbcpp.ahead-of-print/jbcpp-2020-0121/jbcpp-2020-0121.xml. https://doi.org/10.1515/jbcpp-2020-0121
- Alam M.A., Quamri M.A. Herbal preparations in the management of hypothyroidism in Unani medicine. Drug Metab Pers Ther. 2020; 35 (3):/j/dmdi.2020.35.issue-3/dmpt-2020-0123/dmpt-2020-0123.xml. https://doi.org/10.1515/dmdi-2020-0123
- Salerno M., Improda N., Capalbo D. MANAGEMENT OF ENDOCRINE DISEASE Subclinical hypothyroidism in children. European J. of endocrinology. 2020; 183 (2): 13–28. https://doi.org/10.1530/EJE-20-0051
- Pérez-Campos Mayoral L., Hernández-Huerta M.T., Mayoral-Andrade G., Pérez-Campos Mayoral E., Zenteno E., Martinez-Cruz R., Martinez Ruiz H., Martinez Cruz M., Pérez Santiago A.D., Pérez-Campos E. TSH Levels in Subclinical Hypothyroidism in the 97.5th Percentile of the Population. International journal of endocrinology. 2020; 2698627. https://doi.org/10.1155/2020/2698627
- Gaitonde D.Y., Rowley K.D., Sweeney L.B. Hypothyroidism: an update. Am Fam Physician. 2012; 86 (3): 244–51. PMID: 22962987.
- Kyritsi E.M., Kanaka-Gantenbein C. Autoimmune Thyroid Disease in Specific Genetic Syndromes in Childhood and Adolescence. Front Endocrinol (Lausanne). 2020; 11: 543. https://doi.org/10.3389/fendo.2020.00543
- Reiners C., Drozd V., Yamashita S. Hypothyroidism after radiation exposure: brief narrative review. J. Neural Transm (Vienna). 2020; 127 (11): 1455–66. https://doi.org/10.1007/s00702-020-02260-5
- Витебская А.В., Игамбердиева Т.В. Врожденный гипотиреоз в практике педиатра. Медицинский Совет. 2016; 7: 94–100. [Vitebskaya A.V., Igamberdieva T.V. Congenital hypothyroidism in pediatric practice. Medical Council (Meditsinskiy sovet). 2016; 7: 94–110 https://doi.org/10.21518/2079-701x-2016-07-94-100 (in Russian)]
- Bowden S.A., Goldis M. Congenital Hypothyroidism. In StatPearls. StatPearls Publishing. 2020. https://pubmed.ncbi.nlm.nih.gov/32644339/
- Tsujio M., Yoshioka K., Satoh M., Watahiki Y., Mutoh K. Skin morphology of thyroidectomized rats. Vet Pathol. 2008; 45 (4): 505–11. https://doi.org/10.1354/vp.45-4-505
- Ahsan M.K., Urano Y., Kato S., Oura H., Arase S. Immunohistochemical localization of thyroid hormone nuclear receptors in human hair follicles and in vitro effect of L-triiodothyronine on cultured cells of hair follicles and skin. J. Med Invest. 1998; 44 (3–4): 179–84. PMID: 9597806.
- Gao C., Wang Y., Li T., Huang J., Tian L. Effect of subclinical hypothyroidism on the skeletal system and improvement with short-term thyroxine therapy. Oncotarget. 2017; 8 (52): 90444–51. https://doi.org/10.18632/oncotarget.19568
- Delitala A.P., Scuteri A., Doria C. Thyroid Hormone Diseases and Osteoporosis. J. Clin. Med. 2020; 9 (4): 1034. https://doi.org/10.3390/jcm9041034
- Ritter M.J., Amano I., Hollenberg A.N. Thyroid Hormone Signaling and the Liver. Hepatology. 2020; 72 (2): 742–52. https://doi.org/10.1002/hep.31296
- Shafiee S.M., Vafaei A.A., Rashidy-Pour A. Effects of maternal hypothyroidism during pregnancy on learning, memory and hippocampal BDNF in rat pups: Beneficial effects of exercise. Neuroscience. 2016; 329: 151–61. https://doi.org/10.1016/j.neuroscience.2016.04.048
- Rashidy-Pour A., Derafshpour L., Vafaei A.A., Bandegi A.R., Kashefi A., Sameni H.R., Jashire-Nezhad N., Saboory E., Panahi Y. Effects of treadmill exercise and sex hormones on learning, memory and hippocampal brain-derived neurotrophic factor levels in transient congenital hypothyroid rats. Behav Pharmacol. 2020; 31 (7): 641–51. https://doi.org/10.1097/fbp.0000000000000572
- Chuhray S.M., Lavrynenko V.E., Kaminsky R.F., Dzevulska I.V., Malikov O.V., Kovalchuk O.I., Sokurenko L.M. Morphofunctional status of cardio-vascular system of rats with congenital hypothyreosis. Wiad Lek. 2019; 72 (2): 229–33. https://doi.org/10.36740/wlek201902116
- Deng H., Zhou S., Wang X., Qiu X., Wen Q., Liu S., Chen Q. Cardiovascular risk factors in children and adolescents with subclinical hypothyroidism: A protocol for meta-analysis and systematic review. Medicine (Baltimore). 2020; 99 (31): e20462. https://doi.org/10.1097/md.0000000000020462
- van Wijk N., Rijntjes E., van de Heijning B.J. Perinatal and chronic hypothyroidism impair behavioural development in male and female rats. Exp Physiol. 2008; 93 (11): 1199–209. https://doi.org/10.1113/expphysiol.2008.042416
- Кулимбетов М.Т., Рашитов М.М., Саатов Т.С. Моделирование экспериментального гипотиреоза, обусловленного естественным хроническим дефицитом йода в питании. Международный эндокринологический журнал. 2009; 2 (20). URL: http://www.mif-ua.com/archive/article/8754 [Kulimbetov M.T., Rashitov M.M., Saatov T.S. Modeling of experimental hypothyroidism caused by natural chronic iodine deficiency in the diet. International journal of endocrinology. 2009; 2(20) (in Russian)]
- Helal M.B., Labah D.A., El-Magd M.A., Sarhan N.H., Nagy N.B. Thyroidectomy induces thyroglobulin formation by parotid salivary glands in rats. Acta histochemica. 2020; 122 (5): 151568. https://doi.org/10.1016/j.acthis.2020.151568
- Каде А.К., Смеянова Л.А., Лиева К.А., Занин С.А., Трофименко А.И., Джиджихя К.М. Моделирование гипотиреоидного состояния у крысы посредством коагуляции верхней и нижней щитовидной артерии справа. Фундаментальные исследования. 2013; 12–1: 116–21. [Кade А.K., Smeyanova L.A., Liyeva K.A., Zanin S.A., Trofimenko A.I., Dzhidzhikhiya K.M. Gipotireoid modelling of the condition at the rat by means of coagulation of the top and bottom thyroid artery on the right. Fundamental research. 2013; 12–1: 116–21 https://elibrary.ru/item.asp?id=20960834 (in Russian)]
- Berkowitz B.A., Luan H., Roberts R.L. Effect of methylimidazole-induced hypothyroidism in a model of low retinal neovascular incidence. Invest Ophthalmol Vis Sci. 2004; 45 (3): 919–21. https://doi.org/10.1167/iovs.03-0914
- Камилов Ф.Х., Ганеев Т.И., Козлов В.Н., Кузнецова Е.В., Максютов Р.Р. Выбор способа применения и дозы тиамазола для моделирования гипотиреоза у лабораторных крыс. Биомедицина. 2018; 1: 59–70. [Kamilov F.K., Ganeyev T.I., Kozlov V.N., Kuznetsova E.V., Maksyutov R.R. The choice of a method of application and dosage of thiamazole for modeling hypothyroidism in laboratory rats. J. Biomed. 2018; 1: 59–70 (in Russian)]
- Hasebe M., Matsumoto I., Imagawa T., Uehara M. Effects of an anti-thyroid drug, methimazole, administration to rat dams on the cerebellar cortex development in their pups. Int J. Dev Neurosci. 2008; 26 (5): 409–14. https://doi.org/10.1016/j.ijdevneu.2008.03.007
- Johnson K.R., Marden C.C., Ward-Bailey P., Gagnon L.H., Bronson R.T., Donahue L.R. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol Endocrinol. 2007; 21 (7): 1593–602. https://doi.org/10.1210/me.2007-0085
- Johnson K.R., Gagnon L.H., Longo-Guess C.M., Harris B.S., Chang B. Hearing impairment in hypothyroid dwarf mice caused by mutations of the thyroid peroxidase gene. J. Assoc Res Otolaryngol. 2014; 15 (1): 45–55. https://doi.org/10.1007/s10162-013-0427-7
- Löf C., Patyra K., Kero A., Kero J. Genetically modified mouse models to investigate thyroid development, function and growth. Best Pract Res Clin Endocrinol Metab. 2018; 32 (3): 241–56. https://doi.org/10.1016/j.beem.2018.03.007
- Usenko V., Lepekhin E., Lyzogubov V., Kornilovska I., Ushakova G., Witt M. The influence of low doses 131I-induced maternal hypothyroidism on the development of rat embryos. Exp Toxicol Pathol. 1999; 51 (3): 223–7. https://doi.org/10.1016/s0940-2993(99)80100-6
- Zhou J., Cheng G., Pang H., Liu Q., Liu Y. The effect of 131I-induced hypothyroidism on the levels of nitric oxide (NO), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), total nitric oxide synthase (NOS) activity, and expression of NOS isoforms in rats. Bosn J. Basic Med Sci. 2018; 18 (4): 305–12. https://doi.org/10.17305/bjbms.2018.2350
- Reilly C.P., Symons R.G., Wellby M.L. A rat model of the 131I-induced changes in thyroid function. J. Endocrinol Invest. 1986; 9 (5): 367–70. https://doi.org/10.1007/bf03346944
- Кащенко С.А., Мосин Д.В. Структурные и органометрические изменения щитовидной железы крыс в условиях иммуносупрессии и иммуномодуляции на ранних сроках воздействия. Ульяновский медико-биологический журналю. 2020; 1: 110–8. [Kashchenko S.A., Mosin D.V. Structural and organometric changes in rat thyroid gland under early immunosuppressive and immunomodulatory therapy. Ulyanovsk Medico-Biological J. 2019; 1: 110–8 https://doi.org/10.34014/2227-1848-2019-1-110-118 (in Russian)]
- Delange F., Lecomte P. Iodine supplementation: benefits outweigh risks. Drug Saf. 2000; 22 (2): 89–95. https://doi.org/10.2165/00002018-200022020-00001
- Delitala A.P., Scuteri A., Maioli M., Mangatia P., Vilardi L., Erre G.L. Subclinical hypothyroidism and cardiovascular risk factors. Minerva medica. 2019; 110 (6): 530–45. https://doi.org/10.23736/S0026-4806.19.06292-X.
- Chen K., Carey L.C., Valego N.K., Liu J., Rose J.C. Thyroid hormone modulates renin and ANG II receptor expression in fetal sheep. Am J. Physiol Regul Integr Comp Physiol. 2005; 289 (4): 1006–14. https://doi.org/10.1152/ajpregu.00046.2005
- Chen K., Carey L.C., Valego N.K., Rose J.C. Thyroid hormone replacement normalizes renal renin and angiotensin receptor expression in thyroidectomized fetal sheep. Am. J. Physiol Regul Integr Comp Physiol. 2007; 293 (2): 701–6. https://doi.org/10.1152/ajpregu.00232.2007
- Kowalczyk E., Urbanowicz J., Kopff M., Ciećwierz J., Andryskowski G. Elements of oxidation/reduction balance in experimental hypothyroidism. Endokrynol Pol. 2011; 62 (3): 220–3.
- Крюк Ю.Я., Махнева А.В., Золотухин С.Е., Битюков Д.С. Особенности проявления оксидативного стресса при гипотиреозе разной степени тяжести в эксперименте. Патология. 2011; 8 (2): 62–5. [Kruk Y.Y., Mahneva A.V., Zolotuhin S.Y., Bitukov D.S. Features of manifestation of oxidative stress in hypothyreosis of different severity degrees in the experiment. Pathologia. 2011; 8 (2): 62–5 https://www.elibrary.ru/item.asp?id=20868729 (in Russian)]
- Bhargava H.N., Ramarao P., Gulati A., Matwyshyn G.A., Prasad R. Brain and pituitary receptors for thyrotropin-releasing hormone in hypothyroid rats. Pharmacology. 1989; 38 (4): 243–52. https://doi.org/10.1159/000138543
- Chaddha U., English R., Daniels J., Walia R., Mehta A.C., Panchabhai T.S. A 58-Year-Old Man With Fatigue, Weight Loss, and Diffuse Miliary Pulmonary Opacities. Chest. 2017; 151 (6): 131–4. https://doi.org/10.1016/j.chest.2016.11.015
- Bayraktar M., Gedik O., Akalin S., Usman A., Adalar N., Telatar F. The effect of radioactive iodine treatment on thyroid C cells. Clin Endocrinol (Oxf). 1990; 33 (5): 625–30. https://doi.org/10.1111/j.1365-2265.1990.tb03901.x
- Thurston V., Williams E.D. The effect of radiation on thyroid C cells. Acta Endocrinol (Copenh). 1982; 99 (1): 72–8. https://doi.org/10.1530/acta.0.0990072
- Feinstein R.E., Gimeno E.J., el-Salhy M., Wilander E., Walinder G. Evidence of C-cell destruction in the thyroid gland of mice exposed to high 131I doses. Acta Radiol Oncol. 1986; 25 (3): 199–202. https://doi.org/10.3109/02841868609136405
- Amendola E., De Luca P., Macchia P.E., Terracciano D., Rosica A., Chiappetta G., Kimura S., Mansouri A., Affuso A., Arra C., Macchia V., Di Lauro R., De Felice M. A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology. 2005; 146 (12): 5038–47. https://doi.org/10.1210/en.2005-0882
- Kimura S., Hara Y., Pineau T., Fernandez-Salguero P., Fox C.H., Ward J.M., Gonzalez F.J. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996; 10 (1): 60–9. https://doi.org/10.1101/gad.10.1.60
- Parlato R., Rosica A., Rodriguez-Mallon A., Affuso A., Postiglione M.P., Arra C., Mansouri A., Kimura S., Di Lauro R., De Felice M. An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev Biol. 2004; 276 (2): 464–75. https://doi.org/10.1016/j.ydbio.2004.08.048
- Mustapha M., Fang Q., Gong T.W., Dolan D.F., Raphael Y., Camper S.A., Duncan R.K. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants. J. Neurosci. 2009; 29 (4): 1212–23. https://doi.org/10.1523/jneurosci.4957-08.2009