МикроРНК И ИХ МИШЕНИ: ОСНОВЫ БИОИНФОРМАЦИОННОГО ПОИСКА

DOI: https://doi.org/10.29296/24999490-2021-06-01

А.В. Шестаков, А.А. Михайлова, Т.В. Саприна, О.Э. Онхонова ФГБОУ ВО «Сибирский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Российская Федерация, 634050, Томск, Московский тракт, д. 2 Е-mail: Shestakov1808@gmail.com

МикроРНК – короткие некодирующие последовательности нуклеотидов, представляют собой ключевой механизм эпигенетической регуляции. Контроль экспрессии генов происходит на посттранскрипционном уровне посредством комплементарного связывания микроРНК с соответствующей ей молекулой мРНК, что приводит к деградации последней и прекращению дальнейшей трансляции. На сегодняшний день появляется все больше данных относительно вовлеченности микроРНК в механизм развития сердечно-сосудистых, эндокринных, злокачественных и других хронических неинфекционных заболеваний, что позволяет рассматривать микроРНК в качестве перспективной основы создания инновационных диагностических, прогностических и лечебных технологий. Однако, исследования по изучению микроРНК значительно усложняются политаргетными влияниями данных молекул, что подчеркивает необходимость тщательного анализа и прогнозирования эффективных взаимодействий микроРНК:мРНК. С целью преодоления настоящего барьера были созданы бионформационные инструменты, позволяющие с определенной точностью просчитывать потенциальные мишени и эффекты микроРНК, тем самым задавая траекторию движения экспериментальным работам. В настоящем обзоре будут рассмотрены основные принципы молекулярного взаимодействия, лежащие в основе алгоритмов работы инструментов биоинформационного поиска для прогнозирования мишеней и микроРНК:мРНК взаимодействий. Кроме того, будут описаны ключевые параметры и основы их интерпретации для наиболее используемых веб-инструментов: TargetScan и DIANA Tools.
Ключевые слова: 
микроРНК, эпигенетика
Для цитирования: 
Шестаков А.В., Михайлова А.А., Саприна Т.В., Онхонова О.Э. МикроРНК И ИХ МИШЕНИ: ОСНОВЫ БИОИНФОРМАЦИОННОГО ПОИСКА. Молекулярная медицина, 2021; (6): -https://doi.org/10.29296/24999490-2021-06-01

Список литературы: 
  1. Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: from microRNA sequences to function. Nucleic Acids Research. 2019; 47: 155–62 https://doi.org/10.1093/nar/gky1141
  2. Shu J., Vieira Resende e Silva B., Gao T., Xu Z., Cui J. Dynamic and Modularized MicroRNA Regulation and Its Implication in Human Cancers. Scientific Report. 2017; 7 (13356): 1–17. https://doi.org/10.1038/s41598-017-13470-5
  3. Sekar D., Venugopal B., Sekar P., Krishnan R. Role of microRNA 21 in diabetes and associated/related diseases. Gene. 2016; 582 (1): 14–8. https://doi.org/10.1016/j.gene.2016.01.039
  4. Pishavar E., Behravan J. miR-126 as a Therapeutic Agent for Diabetes Mellitus. Current Pharmaceutical Design. 2017; 23 (22): 3309–14. https://doi.org/10.2174/1381612823666170424120121.
  5. Shi C., Huang F., Gu X., Zhang M., Wen J., You L., Cui X., Ji C., Guo X. Adipogenic miRNA and Meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget. 2016; 7 (26): 40830–45. https://doi.org/10.18632/oncotarget.8518
  6. Denby L., Baker A.H. Targeting non-coding RNA for the therapy of renal disease. Current Opinion in Pharmacology. 2016; 27: 70–7. https://doi.org/10.1016/j.coph.2016.02.001.
  7. Panagala M., Biruntha M., Vidhyavathi R., Sivagurunathan P., Senthilkumar S., Sekarf D. Dissecting the role of miR-21 in different types of stroke. Gene. 2019; 681: 69–72. https://doi.org/10.1016/j.gene.2018.09.048.
  8. Konovalova J., Gerasymchuk D., Parkkinen I., Chmielarz P., Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. International journal of molecular sciences. 2019; 20 (23): 1–26. https://doi.org/10.3390/ijms20236055
  9. Mirzaei H., Momeni F., Saadatpour L., Sahebkar A., Goodarzi M., Masoudifar A., Kouhpayeh S., Salehi H., Mirzaei H.R., Jaafari M.R. MicroRNA: Relevance to stroke diagnosis, prognosis, and therapy. J. of Cell Physiology. 2018; 233 (2): 856–65. https://doi.org/10.1002/jcp.25787.
  10. Akito H., Risa K. Dysregulation of microRNA biogenesis machinery in cancer. J. Critical Reviews in Biochemistry and Molecular Biology. 2016; 51 (3): 121–34. https://doi.org/10.3109/10409238.2015.1117054.
  11. Shubin L., Gregory G. MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer. 2015; 15 (6): 321–33. https://doi.org/10.1038/nrc3932.
  12. Slaby O., Laga R., Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochemical J. 2017; 474 (24): 4219–51. https://doi.org/10.1042/BCJ20170079.
  13. Luo Y.J., Huang Q.M., Ren Y., Liu Z.L., Xu C.F., Wang H., Xiao J.W. Non-coding RNA in drug resistance of gastric cancer. World J. Gastrointest Oncol. 2019; 11 (11): 957–70. https://doi.org/10.4251/wjgo.v11.i11.957.
  14. Poursheikhani A, Bahmanpour Z, Razmara E, Mashouri L, Taheri M, Morshedi Rad D, Yousefi H, Bitaraf A, Babashah S. Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr). 2020; 43 (6): 961–88. https://doi.org/10.1007/s13402-020-00528-2.
  15. Kozomara A., Griffiths-Jones S. MiRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research. 2014; 42 (1): 68–73. https://doi.org/10.1093/nar/gkt1181.
  16. Vlachos I., Paraskevopoulou1 M., Karagkouni1 D., Georgakilas1 G., Vergoulis T., Kanellos I., Anastasopoulos I.L., Maniou S., Karathanou K., Kalfakakou D., Fevgas A., Dalamagas T., Hatzigeorgiou A. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Research. 2015; 43: 153–9. https://doi.org/10.1093/nar/gku1215.
  17. Anneke B., Hausser J. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. BioEssays. 2014; 36 (6): 617–26. https://doi.org/10.1002/bies.201300104.
  18. Friedman R., Farh K., Burge C., Bartel D. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research. 2009; 19: 92–105. https://doi.org/10.1101/gr.082701.108.
  19. Chipman L., Pasquinelli A. MiRNA Targeting: Growing beyond the Seed. Trends in Genetics. 2019; 35 (3): 215–22. https://doi.org/10.1016/j.tig.2018.12.005.
  20. Oulas A., Karathanasis N., Louloupi A., Pavlopoulos G., Poirazi P., Kalantidis K., Iliopoulos I. Prediction of miRNA targets. RNA Bioinformatics. 2015; 1269: 207–29. https://doi.org/10.1007/978-1-4939-2291-8_13.
  21. Oliveira A., Bovolenta L., Nachtigall P., Herkenhoff M., Lemke N., Pinhal1 D. Combining Results from Distinct MicroRNA Target Prediction Tools Enhances the Performance of Analyses. Frontiers in Genetics. 2017; 1–10. DOI: 10.3389/fgene.2017.00059.
  22. 22. Liu G., Zhang R., Xu J., Wu C.I., Lu W. Functional conservation of both CDS- and 3’-UTR-located microRNA binding sites between species. Molecular Biology and Evolution. 2015; 32 (3): 623–8. https://doi.org/10.1093/molbev/msu323.
  23. Yates A., Akanni W., Amode M.R., Barrell D., Billis K., Carvalho-Silva D., Cummins C., Clapham P., Fitzgerald S., Gil L., Girón C.G., Gordon L., Hourlier T., Hunt S.E., Janacek S.H., Johnson N., Juettemann T., Keenan, S., Lavidas I., Flicek P. Ensembl 2016. Nucleic Acids Research, 44 (D1): 710–6. https://doi.org/10.1093/nar/gkv1157
  24. O’Leary N., Wright M., Brister J., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D., Astashyn A., Badretdin A., Bao Y., Blinkova O., Brover V., Chetvernin V., Choi J., Cox E., Ermolaeva O., Pruitt K. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research. 44 (D1), 733–45. https://doi.org/10.1093/nar/gkv1189
  25. Karolchik D., Hinrichs A., Kent W.J. The UCSC Genome Browser. Current Protocols in Bioinformatics. 2009; 28 (1): 1.4.1–1.4.26. DOI: 10.1002/0471250953.bi0104s28.
  26. Meseguer S., Mudduluru G., Escamilla J.M., Allgayer H. & Barettino D. MicroRNAs-10a and -10b Contribute to Retinoic Acid-induced Differentiation of Neuroblastoma Cells and Target the Alternative Splicing Regulatory Factor SFRS1 (SF2/ASF). J. of Biological Chemistry. 2011; 286 (6): 4150–64. https://doi.org/10.1074/jbc.m110.167817
  27. Gu W., Xu Y., Xie X., Wang T., Ko J., Zhou T. The role of RNA structure at 5’ untranslated region in microRNA-mediated gene regulation. RNA a publication of RNA society. 2014; 20: 1369–75. https://doi.org/10.1261/rna.044792.114.
  28. Orom U., Nielsen F., Lund A. MicroRNA-10a Binds the 5’UTR of Ribosomal Protein mRNAs and Enhances Their Translation. Molecular Cell. 2008; 30 (4): 460–71. https://doi.org/ 10.1016/j.molcel.2008.05.001.
  29. Mandke P., Wyatt N., Fraser J., Bates B., Berberich S., Markey M. MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS ONE. 2012; 7 (8): e42034. https://doi.org/10.1371/journal.pone.0042034.
  30. He B., Xiao Y.F., Tang B., Wu Y.Y., Hu C.J., Xie R., Yang X., Yu S.T., Dong H., Zhao X.Y., Li J.L., Yang S.M. hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a. Scientific Reports. 2016; 6: 1–12. https://doi.org/10.1038/srep21955.
  31. Erguna S., Oztuzcub S. Sequence-based analysis of 5’UTR and coding regions of CASP3 in terms of miRSNPs and SNPs in targetting miRNAs. Computational Biology and Chemistry. 2016; 62: 70–4. https://doi.org/10.1016/j.compbiolchem.2016.04.003.
  32. lachos I., Hatzigeorgiou A. Functional Analysis of miRNAs Using the DIANA Tools Online Suite. Drug Target miRNA. 2016; 1517: 25–50. https://doi.org/10.1007/978-1-4939-6563-2_2.
  33. Sulc M., Marin R., Robins H., Vanicek J. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3’ UTRs and coding sequences. Nucleic Acids Research. 2015; 43 (1): 474–9. https://doi.org/10.1093/nar/gkv457.
  34. Xu W., San Lucas A., Wang Z., Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinformatics. 2014; 15 (7): 4. https://doi.org/10.1186/1471-2105-15-S7-S4.
  35. Friedman R., Burge C. MicroRNA target finding by comparative genomics. RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. 2014; 1097: 457–76. https://doi.org/10.1007/978-1-62703-709-9_21.
  36. Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993; 75: 855–62. https://doi.org/10.1016/0092-8674(93)90530-4.
  37. Mathews D. Revolutions in RNA Secondary Structure Prediction. Journal of Molecular Biology. 2006; 359 (3): 526–32. https://doi.org/10.1016/j.jmb.2006.01.067.
  38. Hofacker I.L., Fontana W., Stadler P.F., Bonhoeffer L.S., Tacker M., Schuster P. Fast folding and comparison of RNA secondary structures. Monatshefte Chemical. 1994; 125: 167–88. https://doi.org/10.1007/BF00818163.
  39. Gruber A., Bernhart S., Lorenz R. The ViennaRNA web services. RNA Bioinformatics. 2015; 1269: 307–26. https://doi.org/10.1007/978-1-4939-2291-8_19.
  40. Kertesz M., Iovino N., Unnerstall U., Gaul U., Segal E. The role of site accessibility in microRNA target recognition. Nature Genetics. 2007; 39: 1278–84. https://doi.org/10.1038/ng2135.
  41. Benhalevya D., Mc Farland H., Sarshada A., Hafnera M. PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites. Methods. 2017; 118–119: 41–9. https://doi.org/10.1016/j.ymeth.2016.11.009.
  42. Weng H., Huilin H., Chen J. RNA N 6-Methyladenosine Modification in Normal and Malignant Hematopoiesis. Leukemia Stem Cells in Hematologic Malignancies. 2019; 1143: 75–93. https://doi.org/10.1007/978-981-13-7342-8_4.
  43. Deng X., Su R., Hengyu Weng H., Huang H., Li Z., Chen J. RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research. 2018; 28 (5): 507–17. https://doi.org/10.1038/s41422-018-0034-6.
  44. Hsu J., Chiu C.M., Hsu S.D., Huang W.Y., Chien C.H., Lee T.Y., Huang H.D. MiRTar: An integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics. 2011; 12: 300. https://doi.org/10.1186/1471-2105-12-300.
  45. Lewis B., Burge C., Bartel D. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120 (1): 15–20. https://doi.org/10.1016/j.cell.2004.12.035.
  46. Kanoria S., Rennie W., Liu C., Carmack S., Lu J., Ding Y. STarMir Tools for Prediction of microRNA Binding Sites. RNA Structure Determination. 2016; 1490: 73–82. https://doi.org/10.1007/978-1-4939-6433-8_6.
  47. Maragkakis M., Reczko M., Simossis V., Alexiou P., Papadopoulos G., Dalamagas T., Giannopoulos G., Goumas G., Koukis E., Kourtis K., Vergoulis T., Koziris N., Sellis T., Tsanakas P., Hatzigeorgiou A. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Research. 2009; 37: 273–6. https://doi.org/10.1093/nar/gkp292.